
FORTH�ICS � TR���� August ����

Locality�Based Scheduling

for Shared�Memory Multiprocessors

Evangelos P� Markatos�y and Thomas J� LeBlanc�

Abstract

The last decade has produced enormous improvements in microprocessor

performance without a corresponding improvement in memory or intercon�

nection network performance� As a result� the relative cost of communi�

cation in shared�memory multiprocessors has increased dramatically� Al�

though many applications could ignore the cost of communication and still

achieve good performance on the previous generations of shared�memory

machines� good performance on modern machines requires that communi�

cation be reduced or eliminated� One way to reduce the need for commu�

nication is to use scheduling polices that exploit knowledge of the location

of data when assigning processes to processors� improving locality of refer�

ence by co�locating a process with the data it will require� This chapter

presents an overview of the tradeo�s to be made in process scheduling� and

evaluates locality�based scheduling techniques at the level of the operating

system kernel� thread package� and parallelizing compiler�

�Computer Science Department� University of Rochester� Rochester� NY ������ USA
yInstitute of Computer Science� F�O�R�T�H�� Crete� Greece

E�mail fmarkatos�leblancg�cs�rochester�edu
A version of this paper will appear in Zomaya 	Ed�

Current and Future Trends in Parallel and Distributed Computing�
World Scienti�c Publishing� ����



� Introduction

Shared�memory multiprocessors consist of a set of processors that access memory using an intercon�
nection network or bus� In bus�based� cache�coherent �CC� machines like the Sequent Symmetry �also
referred to as UMA� or uniform memory access� machines�� there is a single global memory attached
to the bus� Each processor has a local cache� which brings data from the global memory as needed�
cache coherence is maintained in hardware� In distributed shared�memory �DSM� machines like the
BBN Butter�y family of multiprocessors �also referred to as NUMA� or non�uniform memory access�
machines�� each processor has a local memory� but may access the local memory of another processor
using the interconnection network� The most recent member of the Butter�y family� the TC������
incorporates local caches� but requires that cache coherence be maintained in software�

Despite these di	erences in the memory hierarchy� most shared�memorymultiprocessors employ o	�
the�shelf microprocessors� Unfortunately� the dramatic improvements in microprocessor performance
due to recent advances in VLSI and RISC technology have not produced a corresponding improvement
in application performance on shared�memory machines� Just as increased integer performance does
not produce a corresponding improvement in operating system performance 
Anderson et al�� ����b�
Ousterhout� ����� an increase in computational power in shared�memory multiprocessors does not
guarantee a corresponding improvement in application performance because communication quickly
becomes the bottleneck� As computational power continues to increase� application performance
depends more and more on the extent to which communication costs can be reduced�

One way to reduce communication costs is to use scheduling polices that exploit knowledge of the
location of data when assigning processes to processors� improving locality of reference by co�locating
a process with the data it will require� This type of policy stands in stark contrast to the policies
in use on many shared�memory machines� which attempt to maximize the utilization of processors�
rather than minimize the need for communication� For example� many operating systems use a central
work queue for scheduling processes� with a central work queue� no processor remains idle as long as
there are processes on the queue� Under this type of scheduling policy� a process runs on the next
available processor� even if this means that the data must move from one processor to another as a
result of this decision�

Unfortunately� the need to reduce communication appears to be in con�ict with the desire to keep
all processors busy� For example� an application that executes on one processor incurs no commu�
nication overhead� but su	ers from maximum load imbalance �because all processors are idle except
one�� On the other hand� if the same application executes on many processors� then the load may be
more evenly spread among the processors� but the application may experience high communication
overhead because processors need to cooperate in order to execute the parallel application� In general�
there are three di	erent dimensions of overhead that must be considered by any scheduling algorithm�

� Load imbalance� To maximize the utilization of the hardware �and hopefully improve execution
time�� the scheduler should strive to keep all processors busy�

� Synchronization overhead� The distribution of work to processors� and any redistribution of work
needed to alleviate load imbalance� introduces synchronization overhead among processors� This
overhead can be substantial on large�scale machines� and should be minimized by the scheduler�

� Communication overhead� Moving a process from one processor to another �or naively assigning



a process to any available processor� may also result in moving data from one processor to
another� The scheduler should attempt to minimize the amount of communication introduced
as a by�product of scheduling decisions�

In this chapter we discuss the scheduling problem in shared�memorymultiprocessors at three levels�
the operating system kernel� the thread library� and the run�time system of a parallelizing compiler�
We consider several scheduling alternatives at each level� and discuss how the relative advantages of
di	erent approaches to scheduling change with an increase in the cost of communication�

In section � we discuss the role of the operating system kernel scheduler in scheduling for locality�
particularly with respect to the issue multiprogramming� Section � describes a scheduling technique
for use in thread libraries that reduces the amount of communication introduced as a by�product of
thread scheduling� Section � describes a loop scheduling algorithm for use in parallelizing compilers
that accomplishes a similar goal� Section � summarizes our results and presents our conclusions�

� Kernel Scheduling

The lowest level of scheduling in a multiprocessor system is implemented by the operating system
kernel� The main goal of the kernel�level scheduler is to share the multiprocessor among applications� a
goal which is usually achieved using multiprogramming� In order for multiprogramming to be e	ective
however� any overhead directly or indirectly caused by multiprogramming must be minimized� There
are several potential sources of overhead in a multiprogrammed multiprocessor environment� and each
can signi�cantly a	ect system performance�

Context switch overhead is introduced whenever processes share a processor� Although many
multiprocessor thread packages provide an e�cient user�level context switch mechanism� kernel inter�
vention is still required if several kernel processes share a processor� The frequency of context switching
through the kernel� and therefore the amount of context�switch overhead� depends on the quantum
size �when processes share a processor using time�slicing� and the frequency of communication or
synchronization �which may cause one process to block and another to run��

A second source of overhead is due to preemption in multiprogrammed systems that use time�
slicing� If a process is preempted while inside a critical section or while computing some condition
on which other processes depend� then processes may waste their quantum waiting for the preempted
process to run� If processes spin while waiting� then processor cycles are wasted by spinning� Even if
processes block during synchronization� they must perform a context switch and lose the remainder
of their quantum�

A third source of overhead is the cost of cache reloading� remote memory references� and migration
incurred when a process is moved from one processor to another� During execution� a process builds
state on a processor� either in the cache of a cache�coherent multiprocessor� or in the local memory of
a distributed shared�memory �NUMA� machine� If the process is then assigned to another processor�
it must reload the cache on a cache�coherent machine� and issue remote references or migrate the
contents of memory on a NUMA machine� Even if a process is not moved to a di	erent processor�
other applications can corrupt its cache while the process is preempted� forcing a cache reload� If the
cache miss penalty is high� the associated overhead can seriously impact performance 
Vaswani and
Zahorjan� �����

A fourth source of multiprogramming overhead arises whenever parallel applications share pro�
cessors� Every parallel program strikes a balance between the bene�ts of parallel execution and the
overhead of parallelism in the absence of processor sharing� When a multiprogramming policy causes
applications to share a processor� the overhead of parallelism remains� but the e	ective speed of the
processors appears to decrease� As a result� the balance between the costs and bene�ts of parallelism
embodied in a program can be upset by the multiprogramming policy� which results in ine�cient
execution� In particular� an application with nonlinear speedup will prefer a small number of dedi�
cated processors to a larger number of shared processors� even when the aggregate processor time the
application receives is the same in both cases�

It is extremely di�cult to �nd a single multiprogramming policy that can maximize processor
utilization� ensure fairness� and simultaneously address all of these sources of overhead� The costs



associated with a particular policy depend on the underlying architecture� the cache miss penalty�
the remote access penalty� and the cost of migration� These costs also depend on the structure of the
parallel application� and in particular on the number of processes per application� the amount of state
associated with a process� the frequency and type of synchronization� and the data reference pattern
of the application�

Many di	erent multiprogramming schemes have been proposed or implemented on multiprocessors�
but most are derived from one of three basic approaches� unsynchronized time�sharing �time�slicing��
synchronized time�sharing �coscheduling�� and space�sharing �hardware partitions��

Multiprocessor time�slicing is a straightforward adaptation of uniprocessor time�slicing� and is
frequently employed in operating systems derived from uniprocessor systems� Each application �or
process� is given a fair share of the machine� At the end of a quantum� a processor selects the next
process to run from the ready queue� which may or may not be shared with other processors� There
is no coordination among the processes of an application with respect to when they run or even
where they run� In particular� processes within an application might not all be assigned to di	erent
processors� and there is no guarantee that any two processes will ever run simultaneously�

Although a useful technique for balancing the load in a system� parallel applications can su	er
severe performance penalties under multiprocessor time�sharing� Since there is no guarantee that
an application�s processes will run at the same time� processes may be blocked while waiting for a
preempted process or may be required to context switch after every synchronization operation� Several
studies have shown that this e	ect can lead to severe performance degradation 
Leutenegger� �����
Lo and Gligor� ����a� Lo and Gligor� ����b� Tucker and Gupta� �����

Many operating systems support a single centralized ready queue from which processes are dis�
patched according to their priority� This approach is very popular on small�scale UMA machines�
However� Squillante and Lazowska 
���� have shown that by ignoring the a�nity that may have been
created between a process and a processor� a centralized ready queue can introduce a performance
penalty of ���� with ��� due to cache reload overhead and ��� due to increased bus tra�c and con�
tention� Their suggested solution� local ready queues for short�term scheduling and a global queue for
longer�term load balancing� addresses the issue of a�nity� but does not take other sources of overhead
into account�

Coscheduling was originally proposed by Ousterhout 
���� to address the overhead related to
synchronization� With coscheduling� the processes in an application all run at the same time� There
are two important advantages to coscheduling� no process is forced to wait for another that has been
preempted and processes may communicate without an intervening context switch� There are also
disadvantages to coscheduling� If there are several applications in the system� the machine must cycle
through each of them� during which time the caches can be expected to lose any contents related to
an earlier execution 
Tucker and Gupta� ����� Second� utilization may su	er if applications have a
variable amount of parallelism� or if processes cannot be evenly assigned to time�slices of the machine�

When hardware partitions are used� no two applications share a processor� A set of processors
may be dedicated to an application for a relatively long �xed interval 
Black� ���� or for the entire
duration of the application� Within its own hardware partition� each applicationmay choose to allocate
one process per processor� thereby avoiding entirely the overhead attributed to multiprogramming�
However� to ensure fairness and to e�ciently utilize the processors� the number of processors assigned
to an applicationmight have to change when another application arrives or departs 
Tucker and Gupta�
����� or when the degree of parallelism changes within an application 
Zahorjan and McCann� �����
Unless an application can easily adjust the number of processes it employs during execution� several
processes from the same application may have to share a processor� introducing context switching and
other related sources of overhead�

Tucker and Gupta 
���� proposed a combination of dedicated processor scheduling and a pro�
gramming model that dynamically adjusts the number of processes in an application to equal the
number of processors in the partition� Their model� which assumes the use of �ne�grain threads in
the application� can suspend a kernel process between the execution of two threads� Their exper�
iments show that having one process per processor results in signi�cant performance improvement
when compared to a time�slicing policy� Subsequent work by Gupta et al 
����b investigated the
e	ects of di	erent scheduling policies and synchronization primitives on an UMA multiprocessor us�



ing simulation� They showed that in the presence of multiprogramming� blocking primitives always
outperform spinning primitives� They also showed that coscheduling and hardware partition poli�
cies are better than traditional round�robin prioritized polices due to their high cache hit ratio and
low synchronization overhead� Moreover� hardware partitions along with process control 
Tucker and
Gupta� ���� typically outperform coscheduling because hardware partitions usually achieve higher
processor utilization�

Unfortunately� not all applications can easily adjust the number of running processes on demand�
Some programmingmodels encourage applications to create a static number of processes� so as to avoid
unnecessary process creation� destruction� and context switching� Others use coarse�grain threads of
control� which reduce the opportunities for dynamic adjustment� Although the programming model
used by Tucker and Gupta is widely used� their work does not characterize the e	ects of multipro�
gramming on applications that do not adhere to the model�

Zahorjan and McCann 
���� simulated the performance of hardware partitions with a work�
load containing programs that change their parallelism frequently� They concluded that a dynamic
hardware partition policy is the best choice� since such a policy can reallocate unused processors im�
mediately� Subsequent experimental work by McCann� Vaswani� and Zahorjan 
���� on a Sequent
Symmetry con�rms this conclusion� The same argument may not be valid for a NUMA multiproces�
sor however� since processor reallocation may be too expensive to perform every time an application
changes the amount of parallelism it employs� In addition� applications with a �xed amount of par�
allelism that synchronize very frequently may prefer coscheduling over hardware partitions� since a
small hardware partition may force them to incur context switch overhead on every synchronization
operation�

In this section we illustrate the di	erences between these three multiprogramming schemes using
an implementation of each on the BBN Butter�y� We �rst describe the modi�cations to an existing
operating system necessary to implement each scheme� and then present the results of experiments
with these implementations running a sample application� Our experiments illustrate why coschedul�
ing is often preferable to time�slicing� and why hardware partitions typically perform better than
coscheduling� We conclude that under most circumstances� hardware partitioning is the best strategy
for multiprogramming a multiprocessor� no matter how much parallelism applications employ or how
frequently synchronization occurs�

��� Multiprogramming Implementations

Our multiprogramming experiments are based on a BBN Butter�y Plus multiprocessor running the
Psyche operating system 
Marsh et al�� ����� Scott et al�� ����� We modi�ed the Psyche kernel� which
already supports time�slicing� to implement coscheduling and hardware partitions�

����� Time�Slicing

The Psyche kernel implements a straightforward extension of uniprocessor time�slicing� Users may
create processes �represented by kernel processes� and bind them to physical processors� The kernel
time�slices among the processes on a processor� Processes are never migrated�

Each processor has its own ready queue� which is sorted by process priority� Within a priority
level� processes are served in a round�robin fashion� Each process gets a fair share of the processor�
as in Unix� a user with many processes can get more cycles than a user with few processes�

����� Coscheduling

We implemented coscheduling in Psyche using an adaptation of Ousterhout�s matrix algorithm 
Ouster�
hout� ����� Coscheduling requires that process preemption be synchronized on all processors� In our
implementation we use a quantum of ��� ms� To ensure that all processors begin a new quantum si�
multaneously� we embed a tree barrier 
Mellor�Crummey and Scott� ���� in the clock handler of each
processor� The time required to synchronize �� processors using this tree barrier is about ��� �s� the
additional time required to make a scheduling decision using coscheduling is between �� and ��� �s�



depending on the number of applications� Without coscheduling the clock handler normally consumes
about ��� �s each quantum� including the time to save state and make a scheduling decision� Our
revised clock handler takes about ��� �s each quantum� or ���� of the quantum�

����� Hardware Partitions

Our implementation of dynamic hardware partitions requires cooperation between the operating sys�
tem kernel and the thread library used to implement applications� The allocation of processors to
applications is done by the kernel� Migration� which occurs when a partition grows or shrinks due to
the departure or arrival of a new application� is implemented by the thread package�

When a new application arrives or departs the system� the kernel noti�es each currently executing
application about changes in its partition� If the partition shrinks� the thread library on that node may
choose to either migrate the currently executing thread immediately� or �nish executing the thread
and then deallocate the processor� The latter option is used in conjunction with the task queue model�
explicit migration is used in all other cases� If a thread is migrated� the memory object of the thread
is moved to another processor in the application�s partition� and the thread is placed on the ready
queue of that processor�

Migration requires copying a minimumof one memory object ��K bytes�� Each migration operation
takes about ��ms per memory object� which includes the cost of copying the memory object containing
the state of the thread� unmapping the object in one address space� and mapping it into another� The
cost of dynamically changing a system during execution from one ���processor partition to two ��
processor partitions is about ��� ms� where each process contains ��KB of data�

��� Evaluation of Multiprogramming Policies

We use Gaussian elimination as a sample application to illustrate the e	ect of multiprogramming policy
on application performance� We chose Gaussian elimination because it has several di	erent parallel
decompositions� which allows us to vary the degree of parallelism and the frequency of synchronization
within a single application�

We implemented four versions of Gaussian elimination� representing di	erent parallelizations of
row elimination� The �rst implementation uses a very �ne�grain decomposition and condition syn�
chronization� The program creates a thread for each element in the matrix to be eliminated� Before
eliminating an entry� the thread checks to see if the condition �ags associated with the pivot row and
the entry are set� If so� the pivot row and the row containing the entry are copied into the local
memory� the computation is performed� and the result is copied back into the original matrix�

The second implementation is similar to the �rst� except that it uses barrier synchronization� The
program creates a set of threads to eliminate the entries in a single column of the matrix� These
threads synchronize using a barrier upon completion� The program then creates a new set of threads
for the next column�

The third implementation uses a coarse�grain decomposition and condition synchronization� The
program creates one thread per processor� and distributes the rows of the matrix among the threads
in a round�robin fashion� Each thread eliminates all the entries in several rows� This implementation
requires much less synchronization than the earlier implementation based on condition synchroniza�
tion� In addition� there is unlikely to be much spinning� since the elimination of the pivot row is the
�rst computation performed in each phase of execution� Most important� there are many fewer row
copy operations performed with the coarse�grain decomposition� O�N�� instead of O�N���

The fourth implementation is similar to the previous one� but uses barrier synchronization instead
of condition synchronization� Each thread eliminates some elements of a single column of the matrix�
synchronizes with the other threads using a barrier� and then proceeds to the next column�

For each multiprogramming policy� we ran the four implementations of Gaussian elimination under
two di	erent scenarios� ��� under ideal conditions where only one application is in the system� and ���
under multiprogramming� with an application in the background� Our multiprogramming experiments
incorporate a compute�bound application in the background that consumes all the cycles it is given�
Our experimental results focus on the execution time of the parallel portion of an application� the



serial portion� consisting of program loading and creation of virtual processors� is not included in the
timing �gures�

����� Evaluation of Time�Slicing

Our main concern with time�slicing is the overhead introduced by preemption� In the absence of
this overhead� we would expect a multiprogramming level of � �that is� two applications sharing the
machine� to introduce a slowdown of ��

Table � shows the running time of our four implementations of Gaussian elimination ��������
matrix� on a �� processor BBN Butter�y under time�slicing� The �rst column shows the running time
of the application in stand�alone mode� the second column shows the running time when there is a
single background application� and the third column shows the slowdown induced by the background
application� The two implementations that use a �ne�grain decomposition both take much longer to
execute than the two implementations that use a coarse�grain decomposition because thread creation
time dominates the �ne�grain implementations� and the communication costs associated with the
�ne�grain implementations are much higher than those in the coarse�grain implementations�

Stand�alone Multiprogrammed Slowdown
Coarse�grain w� barriers ���� ���� ����
Coarse�grain w� conditions ���� ���� ����
Fine�grain w� barriers ���� ���� ����
Fine�grain w� conditions ���� ���� ����

Table �� Execution time �in seconds� of Gaussian elimination on ���processor BBN Butter�y under
time�slicing�

As seen in Table �� the implementation that uses barrier synchronization and a coarse�grain de�
composition su	ers a slowdown of ���� under time�slicing when two applications share the machine�
The reason for this unexpectedly high slowdown is that barrier programs are very sensitive to the
e	ects of preemption� since the preemption of any one thread delays all threads�

The implementation that uses condition synchronization and a coarse�grain decomposition is not
adversely a	ected by multiprogramming� With a multiprogramming level of two� this program experi�
ences a slowdown of ����� which is very close to what was expected� The reason that preemption does
not distort this execution is that a thread does not depend on every other thread making progress
during a short interval of time� as is true with barriers� Only the thread computing the next pivot
row can delay other threads when preempted�

The �ne�grain decomposition with barriers experiences a slowdown of ����� which is an improve�
ment on the slowdown of ���� su	ered by the coarse�grain decomposition with barriers� The reason
for this improvement is that both programs have the same number of barriers �and hence the same
opportunities for problems with preemption�� but the overall execution time of the �ne�grain program
is greater� As a result� there are three barriers per quantum in the coarse�grain program� and fewer
than ��� barriers per quantum in the �ne�grain program� The more frequent use of barriers in the
coarse�grain program produces the di	erence in slowdown�

The �ne�grain decomposition with condition synchronization experiences a slowdown of only �����
which is comparable to the slowdown experienced by the coarse�grain decomposition with condition
synchronization� Once again� preemption does not distort this execution because a thread does not
depend on every other thread making progress during a short interval of time� as is true with barriers�
Condition synchronization is not frequent enough in this application for preemption to signi�cantly
a	ect the execution time�

None of these implementations of Gaussian elimination synchronize extremely often� even the
�nest�grain implementationmust eliminate an element between synchronization points� and that takes
several milliseconds� As a result� the implementation with barriers only executes a barrier about once
every �� ms� Much worse cases of slowdown are possible with smaller matrices� In particular� a



������� matrix problem slows down by a factor of � in the presence of one background application�
We can use odd�even sort to measure the e	ect of multiprogramming on programs that synchronize

very frequently� Our odd�even sort program creates one thread on each processor� The array to be
sorted is divided statically among the threads� Each thread performs N�P�� comparisons in each
phase� and then synchronizes with the other threads using a barrier� The length of a phase is a few
milliseconds for an array of several thousand elements on �� processors�

On a dedicated machine� sorting an array of ��� elements takes ��� ms� The same program run
with a job in the background takes ��� seconds� a slowdown factor of ���� The problem is caused by
a combination of barriers� frequent synchronization �every ��� �s�� and preemption� If we modify the
implementation of barriers to yield the processor to another application rather than spin� giving up
the rest of the quantum but receiving the next quantum sooner� we see a slowdown of ���� yielding
the processor ensures that almost no barrier is ever completed within a quantum�

����� Evaluation of Coscheduling

In order to measure the costs associated with coscheduling� we measured the running time of a coarse�
grained Gaussian elimination program �������� matrix� under varying levels of processor sharing�
The program was run on � processors� with �� �� �� and � background applications� The results are
shown in Table ��

Number of Running Slowdown
Applications Time

� ��� ����
� ���� ����
� ���� ����
� ���� ����

Table �� Running time �in seconds� of coarse�grain Gaussian elimination program on ��processor BBN
Butter�y under coscheduling�

As seen in the table� the execution time of a single application rises linearly as the degree of
multiprogramming rises� For this program� coscheduling does not appear to introduce any signi�cant
overhead�

Next we consider whether unused slots in the processor�time scheduling matrix are of much use�
That is� when an application is given extra processor cycles for one of its threads at a time when
the other threads in the application are not running� does this improve the execution time of the
application� To answer this question� we ran the Gaussian elimination program with a background
application that only uses half of the processors� This scenario creates a time�slice during which the
Gaussian elimination program runs all its threads� followed by a time�slice in which half of its threads
are given extra cycles� We measured the running time of the application under this scenario to be
���� seconds� which is a small improvement on the ���� seconds required by the application when no
extra scheduling slots are given to it� This minor improvement in execution time suggests that unused
slots do not contribute much to system throughput in the presence of synchronization� Ousterhout�s
simulations 
Ousterhout� ���� show that coscheduling is typically ��� e	ective �measured in terms
of the percent of processor time spent coscheduled�� this result suggests that the e	ectiveness can�t
be improved very much by utilization of empty slots in the scheduling matrix�

����� Evaluation of Hardware Partitions

Our main concern with hardware partitions is the overhead introduced when the number of threads
used by an application exceeds the number of processors allocated to the application� As applications
arrive and depart from the system� multiple threads from a single application may be forced to share a
processor� To measure the overhead of multiplexing threads� we ran the Gaussian elimination program



on a ������� matrix with �� coarse�grain threads and barrier synchronization� We varied the number
of processors� and observed the slowdown due to having fewer processors than threads� the results are
shown in �gure ��

�

��

��

��

��

���

���

���

���

���

���

Number of Processors

Completion

Time
�in seconds�

����� �����

measured time
expected time

Figure �� Running time of Gaussian elimination with �� threads and barriers on hardware partitions�

We would expect the execution time of the program on � processors to be at least twice the
execution time on �� processors� The additional overhead of multiplexing threads should make the
time on � processors even more than twice the time on �� processors� Nonetheless� as shown in �gure
�� the time required to execute the program with �� threads on � processors is less than twice the
time used on �� processors� These same results were observed for the program that uses condition
synchronization� One reason for the better than expected performance on � processors is that there is
signi�cant contention for the pivot row on �� processors� and much less contention on � processors� In
addition� there is a slight imbalance in the computation �due to tail e	ects in the division of work in
the matrix�� and therefore the application achieves higher processor utilization on � processors than
on �� processors� In general� applications can utilize � processors better than �� processors because
the speedup of an application is typically sublinear�

These experiments do not include the costs of migration� To measure the e	ects of dynamic hard�
ware partitions� we started the Gaussian elimination program on �� processors and then immediately
introduced a background application� The arrival of the second application causes the kernel to di�
vide the machine into two ��processor partitions� The Gaussian elimination application migrates �
threads from the larger partition into the new smaller partition� To isolate the costs of migration� no
computation was performed by the Gaussian elimination program while holding �� processors� The
completion times of the various implementations of Gaussian elimination on a ���processor partition
and an ��processor partition are shown in Table ��

These results show that even with the one�time cost of migration� and the recurring cost of mul�
tiplexing threads on a virtual processor� a hardware partition of � processors takes less than twice as
long as a �� processor partition� The lack of linear speedup in the application� and the reduced com�
munication and contention that results from using a smaller number of processors� argues for hardware
partitions� Based on this observation� we would expect the bene�ts of using hardware partitions to
exceed the costs in most cases�



Stand�alone Multiprogrammed Slowdown
Coarse�grain w� barriers ���� ���� ����
Coarse�grain w� conditions ���� ���� ����
Fine�grain w� barriers ���� �� ����
Fine�grain w� conditions ���� �� ���

Table �� Execution time �in seconds� of Gaussian elimination on ���processor and ��processor parti�
tions of BBN Butter�y�

����� Comparison of Kernel Scheduling Policies

A comparison between the three scheduling policies for each version of the Gaussian elimination
program is presented in �gure �� Each graph depicts the execution time of the program for each
policy in the presence of a single background application�

As can be seen in Figure �� under time�slicing a background application usually results in slowdown
well above �� Coscheduling�s slowdown is only slightly higher than � in most cases� However� hardware
partitions incur slowdown less than � in all cases� and in at least one case� the slowdown is substantially
less than �� Clearly� hardware partitions are preferable for this application� regardless of the number
of threads used or the frequency of synchronization�

In summary� time�slicing introduces preemption� which can have enormous impact on a program�
particularly programs that use barriers� Programs that don�t use barriers� or synchronize infrequently�
are immune to the e	ects of time�slicing� Coscheduling can remove the overhead due to preemption�
but it has a built�in e	ectiveness of ��� or so� and performs poorly in cases where an application
cannot e	ectively exploit the entire machine for all of its lifetime� Hardware partitions do not su	er
from preemption� incur very little context switch overhead �assuming a user�level context switch
mechanism�� and reduce the need for communication �and therefore reduce the e	ects of contention��
In addition� hardware partitions allow an application to optimize its implementation for the percentage
of the machine allocated to it�

In general� there are several reasons why coscheduling can perform signi�cantly worse than hard�
ware partitions� ��� coscheduling results in cache corruption� whereas hardware partitions do not�
��� there are fewer remote references and less contention when fewer processors are used� ��� there is
less imbalance in the computation when the total amount of work is divided among fewer processors�
These factors are signi�cant enough to more than compensate for the costs of �infrequent� migration
and the additional overhead of blocking synchronization �rather than busy�waiting� required within
a hardware partition when the number of threads exceeds the number of available processors� Based
on these observations� we believe that in most cases the best choice of multiprogramming policy for
multiprocessors is dynamic hardware partitions�

� Thread Scheduling

Threads are a popular structuring method for parallel applications 
Bershad et al�� ����� Doeppner Jr��
����� Sun Microsystems� Inc�� ����� Weiser et al�� ����� and most manufacturers of multiprocessors
provide a lightweight thread package as part of the standard programming environment� There are
several reasons for the popularity of threads including�

� Many applications decompose naturally into �ne�grain units of computation� Using a kernel
process to represent each �ne�grain unit of computation can be very expensive� both due to
the overhead of process creation and destruction� and the fact that all scheduling must be done
inside the kernel� Threads allow the implementation to re�ect the natural decomposition of the
algorithm without imposing enormous costs�

� Programs that use a �ne�grain decomposition implemented with threads can usually run on any
number of processors� and can easily adapt to a change in the number of processors �possibly



�
���
���
���
���
�

���
���
���
���
	

	��
	��
	��

Coarse grain�threads� barrier synch

�

���

���

���

���

�

���

���

���

���

	

Coarse grain�threads� condition synch

�

���

���

���

���

�

���

���

���

���

	

Fine grain�threads� barrier synch

�

���

���

���

���

�

���

���

���

���

	

Fine grain�threads� condition synch

hardware partitions

coscheduling

time�slicing

Figure �� Relative slowdown introduced by a multiprogramming level of � for di	erent scheduling
policies and programming models�



due to a repartition of the machine when a new application arrives� 
Tucker and Gupta� �����

� It is both easier and cheaper to migrate a lightweight thread� which shares it address space with
other threads� than a kernel�level process with its own address space� The operating system can
exploit this fact when preempting a thread that holds a critical resource� allowing the thread to
complete the critical section on another processor 
Anderson et al�� ����a�

� Lightweight threads admit a �ne�grain decomposition� which o	ers many opportunities to per�
form load balancing� In addition� load balancing can be implemented via thread placement
rather than process migration�

Despite these advantages� the degree of parallelism that can be e	ectively exploited by an appli�
cation is limited by the overhead of using threads� Historically� this overhead has been dominated by
the cost of thread creation� destruction� and context switching� However� recent work has shown that
the cost of these thread management operations can be drastically reduced� so that threads need only
be an order of magnitude more expensive than a procedure call 
Anderson et al�� ����� Under these
circumstances� threads should be cheap enough to use for �ne�grain parallelism�

Unfortunately� the overhead associated with lightweight threads is not limited to the cost of thread
management� There is an additional cost to using �ne�grain threads� the cost of bringing data into
the local memory or cache where a thread executes� This cost� whether the result of explicit copy
operations between local and remote memory on a distributed�memory machine� or the result of cache
misses on a multiprocessor with coherent caches� can be substantial� On modern multiprocessors�
which have extremely fast processors and relatively slow main memory� this overhead can dominate
the execution time of a thread�

To illustrate the magnitude of this overhead� we implemented both a coarse�grain and �ne�grain
decomposition of Gaussian elimination on a Silicon Graphics �D����GTX Iris multiprocessor work�
station �a member of the Power series�� Using � processors� the coarse�grain decomposition �one
thread per processor� requires ���� seconds to process a matrix with ������� elements� the �ne�grain
decomposition �one thread per element to be eliminated� takes ����� seconds on � processors� The
factor of � di	erence in performance cannot be explained by the cost of creating threads� since it
only takes about one second to create� schedule� and destroy all ������� threads used in the �ne�grain
decomposition� In addition� since threads run to completion� there is no extra context�switch overhead
generated by the use of �ne�grain threads� The di	erence between the performance of the �ne�grain
and coarse�grain decompositions is mainly attributed to the time required by each thread to load its
data into the local cache� In the �ne�grain decomposition� each thread loads an entire row of the
matrix into the local cache� and references each element of the row only once or twice� The time spent
loading data into the cache in the coarse�grain decomposition is small� because each processor loads
a portion of the matrix into its local cache� and then references only that portion�

This example illustrates a general problem with lightweight threads� they do not execute long
enough to amortize the cost of establishing their state in the local memory or cache� Even though
thread operations may be very cheap� an implementation that uses �ne�grain threads will typically
perform much worse than an analogous coarse�grain implementation� As a result� programmers avoid
using �ne�grain threads� despite the many bene�ts of doing so�

Previous work on thread scheduling has focussed on the goal of load balancing� For example�
in the process control scheme 
Tucker and Gupta� ����� Uniform System 
Thomas and Crowther�
����� Brown Threads 
Doeppner Jr�� ����� and Presto 
Bershad et al�� ����� all threads of the same
application are placed in a FIFO central work queue� Processors take threads from this queue and
run them to completion� The load is evenly balanced in that no processor remains idle as long as
there is work to be done�

Anderson et� al� 
���� argued for the use of per�processor ready queues within a thread package to
improve scalability �reducing contention for the single ready queue� and to preserve processor a�nity�
Under this scheme� a newly created thread is placed on the ready queue of the processor on which it
was created� Idle processors scan their own ready queues �rst� looking for threads to execute� If there
are no threads in the local ready queue� a processor looks in the the ready queues of other processors�



All of these user�level policies execute a thread on the processor on which the thread was created�
or on whichever processor happens to be idle when the thread reaches the front of the ready queue�
Once a thread begins execution� it typically runs to completion on that processor� thus preserving
cache a�nity� Only in rare cases does a thread establish state on a processor and then migrate to
another� However� even in cases where a thread executes on only one processor� it may spend a
substantial percentage of its lifetime bringing the data it needs into the local cache� Our goal is to
�nd an appropriate initial placement of the thread so as to reduce the time spent loading data into
the cache�

This thread placement problem has been studied from the compiler�s point of view� Bokhari

���� and Polychronopoulos 
���� considered the problem of assigning a graph of communicating
processes to a set of processors so that the total completion time is minimized� Bokhari showed
that this problem is NP�complete� and described algorithms for special cases where the problem is
polynomial� Polychronopoulos gave an optimal algorithm for a speci�c set of graphs� and a heuristic
algorithm that �nds a suboptimal solution for any graph� The key idea in the heuristic is to merge
two communicating processes into one� as long as the parallelism of the program is not a	ected�

We propose a new thread scheduling technique� called memory�conscious scheduling �MCS�� that
reduces the overhead associated with loading data into local memory or cache� The distinguishing
feature of this technique is the priority placed on maintaining locality of reference when scheduling
threads� The basic idea is to schedule a set of threads that reference the same data on the same
processor� By doing so we guarantee that only the �rst thread to run on a processor will have to bring
a signi�cant amount of data into the local memory or cache� other threads will be able to use the
data left behind in the local memory or cache� Of course� a static assignment of threads to processors
could result in load imbalance� and therefore we migrate threads when load imbalance occurs� Our
experiments on the Iris and BBN Butter�y Plus multiprocessors con�rm that this scheduling technique
results in signi�cant performance improvements for applications using �ne�grain threads� In fact� the
execution time of an application using �ne�grain threads under memory�conscious scheduling is often
comparable to that of the corresponding coarse�grain implementation of the same application�

��� Implementation Issues

Under memory�conscious scheduling� a thread executes on a processor whose local memory or cache
already contains some of the data the thread will access� Since we do not expect an optimal solution
to the thread and data placement problem� we do not require extremely accurate or extensive infor�
mation about a program� The more information that is available� the better the thread placement
decision is likely to be� However� memory�conscious scheduling can still be used even in cases where
information about threads and data location is incomplete� Under those circumstances� memory�
conscious scheduling might make imperfect decisions� but will almost always perform better than a
scheme that does not preserve locality at all�

Even though we do not require a complete and accurate precedence graph for the program� we
do require some knowledge of the distribution of data and the data access patterns of threads� This
knowledge can be provided by the programmer� the thread package� or a compiler�

On a distributed shared�memory machine like the BBN Butter�y Plus� data and thread placement
is often under user control� Since locality management is performed by the application programmer�
through the explicit allocation and copying of data� the programmer knows the initial location of
all data� and is aware of any movement of data� As a result� the programmer can explicitly assign
threads to processors based on the location of data� This is the approach we used in our implemen�
tation of memory�conscious scheduling within an existing thread package running under the Psyche
multiprocessor operating system 
Marsh et al�� ���� on the Butter�y�

BBN�s Uniform System library 
Thomas and Crowther� ���� suggests an alternative approach
to implementing memory�conscious scheduling on a distributed shared�memory machine� The Uni�
form System is a shared�memory� data�parallel programming environment� Within a Uniform System
program� task generators are used to create parallel tasks �threads�� Each task operates on some por�
tion of a large� shared address space distributed evenly throughout the machine� Task descriptors are
placed on a global work queue� and are removed by processors looking for work� Locality management



is performed in software by the application� The programmer can use a bulk data transfer mechanism
to copy data from the shared address space into local memory� where it can be modi�ed and then
copied back�

The Uniform System library knows the location of shared data� since it provides the routines
to allocate memory in the shared address space� In many cases it also knows the data a thread will
access� the descriptor that de�nes a task is usually an index into a shared data structure� and the data
accessed by the task is determined by this index� Given this knowledge� memory�conscious scheduling
can be implemented by the thread scheduler in the Uniform System� Although a library package
cannot in general know which data will be accessed by a thread� we have found that this information
is readily available for most Uniform System programs�

A machine with coherent caches� like the SGI Iris� introduces two additional complications�

� Locality management� including the placement of data� is no longer under programmer control�
The hardware coherency protocol causes data to migrate or to be replicated when it is accessed�

� There is no local memory per se associated with each processor in the Iris� there is only main
memory and local caches� As a result� no data is local to any processor at startup� and the
initial assignment of data to caches depends on the initial assignment of threads to processors�

Due to these complications� an implementation of memory�conscious scheduling on the Iris cannot
be based on the initial location of data� as is the case with the Butter�y Plus� Instead� thread
placement decisions must be based on the precedence relations among threads� Since the current
location of data depends on the most recent access to it� a thread should run on the same processor
as its predecessor in the precedence graph�� Presumably� the data used by a thread�s predecessor will
still be in the cache when the thread runs�y

If a thread has more than one predecessor in the precedence graph� choosing the processor that
last ran any one of them will reduce the need to load data into the cache� If the majority of the
data needed by a thread was last accessed by one other thread� then the processor that executed that
thread should be chosen�

��� Performance Implications

In this section we examine the performance implications of memory�conscious scheduling on two
di	erent multiprocessor architectures� a distributed shared�memory machine without caches �BBN
Butter�y Plus�� and a bus�based� cache�coherent multiprocessor �SGI Iris�� For our experimental
evaluation� we chose application programs whose communication patterns are representative of a
large class of �ne�grain parallel applications� These application programs are�

� Gaussian elimination� This well�known algorithm for solving a system of N simultaneous linear
equations is representative of a large class of scienti�c applications that use vector operations�
In the �ne�grain decomposition� a thread is created for each element to be eliminated� Each
thread adds a multiple of the current pivot row to the row of the element to be eliminated�

� Merge sort� This standard sorting algorithm is representative of a large class of divide�and�
conquer problems� including convex hull� FFT� factorial� �bonacci� and the planar closest�
neighbor problem� In the �ne�grain decomposition� a thread is created for each recursive subdi�
vision of the input� Each thread merges two sorted lists�

�If data is accessed by at most one thread� no scheduling policy can reduce the overhead of loading the data into
the cache� since it has to be loaded at least once� Knowing the initial placement of data would help in this case on the
Butter�y Plus� but the performance benets would likely be small� since such a programwould either entail coarse�grain
threads 	amortizing the cost of loading data over a long period of execution
� or would terminate quickly under any
reasonable policy�

y If the machine is multiprogrammed� we assume a space�sharing policy is used� in which a subset of processors is
devoted to a single application�



� Grass�re� This nearest�neighbor algorithm to compute the depth of objects in an image repre�
sented by a binary input matrix is representative of many other parallel algorithms for successive
over�relaxation� convolution� edge detection� feature enhancement� and smoothing� During each
iteration� the �ne�grain decomposition creates a new thread for each row in the image�

We implemented three versions of each application� a coarse�grain decomposition� a �ne�grain
decomposition with a load balancing policy� and a �ne�grain decomposition under memory�conscious
scheduling� The coarse�grain decomposition creates as many threads as processors� and assigns a part
of the data to each thread� Both �ne�grain decompositions create one thread for each natural unit of
parallelism in the application �e�g� one thread for each element to be computed in a matrix�� Under
the load balancing policy� a thread is assigned to the least loaded processor� Under memory�conscious
scheduling� a thread is assigned to a processor containing some of the data it will access�

����� Performance on the BBN Butter�y Plus

To quantify the bene�ts of memory�conscious scheduling on the Butter�y Plus� we measured the exe�
cution time of the �ne�grain implementations of our applications with and without memory�conscious
scheduling� We also measured the execution time of the �ne�grain implementation under the load
balancing policy exclusive of inter�processor communication� so as to place a bound on the bene�ts of
any placement policy� The results of our experiments on � processors appear in Table ��

Application Load balancing MCS Lower Bound
Gauss elimination ��� ���� ����

Merge sort ���� ���� ���
Grass�re �� �� ��

Table �� Execution time �in seconds� of �ne�grain parallel applications�

As can be seen in Table �� memory�conscious scheduling improves the performance of Gaussian
elimination and Grass�re by about ���� and merge sort by ���� when compared against the tradi�
tional load balancing policy� Moreover� no other thread placement policy is likely to do much better�
since memory�conscious scheduling is within ����� of the unrealizable lower bound� where commu�
nication is free� Given that communication is not free in practice� and also that parallel programs
require some communication� these results suggest that memory�conscious scheduling provides nearly
optimal thread placement for these �ne�grain parallel programs�

����� Performance on the SGI Iris

In the previous section we showed that memory�conscious scheduling improves application performance
by ������ on the Butter�y Plus� a distributed shared�memory machine� This result may not be
surprising� given that nonlocal memory accesses are substantially more expensive than local memory
accesses on the Butter�y� and software�based locality management is essential to good performance�
Software�based locality management has not received much attention in bus�based cache�coherent
multiprocessors like the Iris however� since the existence of coherent caches creates an illusion of
uniformmemory access� In this section we quantify the bene�ts of using memory�conscious scheduling
on the Iris� and show that in general these bene�ts depend not on the presence or lack of coherent
caches� but rather on the cost of a remote memory access �or cache miss� relative to the speed of the
processor�

To quantify the bene�ts of using memory�conscious scheduling on the Iris� we measured the exe�
cution time of the three di	erent versions of each of our application programs� coarse�grain threads�
�ne�grain threads with load balancing �LB�� and �ne�grain threads with memory�conscious scheduling
�MCS�� The results appear in Figures ����

Figure � shows that the �ne�grain decomposition of Gaussian elimination under the load balancing
policy is � times slower than the coarse�grain decomposition on � processors� In addition� the �ne�



grain decomposition with load balancing is unable to exploit more than three processors� the extensive
bus tra�c generated by having every thread load a row of the matrix into the local cache during
its short lifetime limits the number of processors that can be used e	ectively� Memory�conscious
scheduling eliminates most of this bus tra�c however� so much so that the performance of the �ne�
grain decomposition under memory�conscious scheduling is comparable to that of the coarse�grain
decomposition� The only di	erence between the two is the cost of creating ������� threads� or about
one second�

Figure � plots the results for Grass�re� Once again� �ne�grain threads under memory�conscious
scheduling are comparable to a coarse�grain decomposition� The improvement over the load balancing
policy is not quite as dramatic as in the earlier example� but is still substantial� Similar results for
merge sort are shown in Figure ��

�

��

��

��

��

��

��

��

��

��

��

� � � � � � �

Time
�secs�

Processors

Coarse�grain �

�

�

�

�

�
�

�

LB �

�

�

� � � � �

MCS �

�

�

�

�

� �
�

Figure �� Gaussian elimination of a ��� by ��� matrix

We can draw several conclusions from these examples� First� �ne�grain threads under traditional
scheduling policies perform much worse than coarse�grain threads� not because of the high cost of
thread management� but rather because of the cost of repeatedly loading data into the local cache�
Second� memory�conscious scheduling alleviates most of this performance disparity by scheduling
a thread on the processor containing the data it needs� Third� the bene�ts of memory�conscious
scheduling depend on the application� and in some cases� on the number of processors�

The performance bene�ts of memory�conscious scheduling vary across our applications because
each of the applications exhibits a di	erent degree of data sharing among threads� In Gaussian
elimination� each thread modi�es a single row of the matrix based on the contents of the pivot row�
which need only be loaded into each cache once� In merge sort� each thread processes two sorted lists
produced by two other threads� In Grass�re� each thread modi�es a single row of the image matrix
based on the contents of two boundary rows� By scheduling a thread on the processor containing the
data to be modi�ed� memory�conscious scheduling eliminates a third of the memory tra�c in Grass�re�
half the memory tra�c in merge sort� and nearly all the memory tra�c in Gaussian elimination� The
performance results in Figures ��� are consistent with these observations�

Figure � suggests that the relative bene�ts of memory�conscious scheduling depend in part on the
number of processors used during execution� There are several reasons for this�

� With a small number of processors� there is a good chance that a random placement of threads
produces the desired result of having threads run on the processors containing their data� For



��

��

��

��

��

��

��

��

��

���

���

���

� � � � � � �

Time
�secs�

Processors

Coarse�grain �

�

�

�

�

�

�
�

LB �

�

�

�

�

�
�

�

MCS �

�

�

�

�

�

�
�

Figure �� Grass�re on a ��� by ��� matrix

example� with � processors there is a ��� chance that a random placement policy produces the
best placement for a particular thread�

� As the number of processors increases� so does bus contention� which slows down every main
memory access� By reducing the need for main memory accesses� memory�conscious scheduling
reduces contention� which improves the speed of any remaining accesses� This e	ect is particu�
larly important on bus�based multiprocessors such as the Iris� where bus contention is often a
problem�

� As the number of processors increases� so does the total amount of available cache �or local
memory� space� Extra cache space decreases the likelihood that data will be ejected from a
cache� which means that a thread�s data will almost always reside in some cache�

To illustrate these points� we plotted the relative performance improvement of memory�conscious
scheduling over the traditional load balancing policy for each of our applications as a function of the
number of processors� The results appear in Figure ��

As can be seen in Figure �� the performance bene�ts of memory�conscious scheduling increase
with the number of processors� although the precise improvement depends on the application� For
example� the percentage improvement of Grass�re rises slowly� but steadily� with an increase in the
number of processors� The improvement of merge sort rises very quickly up to � processors� but then
remains constant� Gaussian elimination exhibits dramatic improvements up to � processors� and then
slow� steady improvements thereafter�

Gaussian elimination exhibits a jump in improvement between � and � processors because the
matrix used in our experiments doesn�t �t in three caches� but does �t in four�z Thus� there are
no cache evictions on � processors� once the caches contain the entire matrix� memory�conscious
scheduling reduces the need for any main memory accesses other than those caused by write�sharing�

Performance improvements are still possible even when the matrix does not �t in the local caches�
As long as parts of the matrix reside in the caches long enough to be used by more than one thread�
some main memory accesses are avoided� In Gaussian elimination� the portion of the matrix that

zThe processors on the Iris have a ��KB rst�level cache and a �MB second�level cache�



��

��

��

��

��

��

� � � � � � � �

Time
�secs�

Processors

Coarse�grain �

�

�

�

�

LB ��

�

�

�

MCS �

�

�

�

�

Figure �� Merge sort of � million integers

needs to be stored in the caches shrinks as the matrix becomes triangular� and the computation is
centered on higher numbered rows� During the latter stages of the execution� the data required by
the threads will �t in the local caches� even if the original matrix did not�

The image matrix used in Grass�re �ts in two caches� so we do not see much improvement as we
increase the number of processors from � to �� Even though the input to merge sort �ts in eight caches
�but not four�� we do not see an improvement in the relative bene�ts of memory�conscious scheduling
when we move from � to � processors� the form of the divide�and�conquer algorithm is such that most
of the bene�ts of locality management come from the low levels in the tree� which do not require all
the data to be resident in the caches�

����� Comparison of Butter�y Plus and Iris Results

It is somewhat surprising that memory�conscious scheduling improves performance by ������ on the
Butter�y Plus� and by ������ on the Iris� We would expect any locality management technique�
including memory�conscious scheduling� to be more e	ective on distributed share�memory machines
like the Butter�y Plus than on bus�based� cache�coherent multiprocessors like the Iris� It is obvious
from our experiments that the lack of hardware coherency does not by itself dictate the need for
locality management�

The processors on the Iris are about �� times faster than the processors on the Butter�y Plus�
However� a cache miss on the Iris is only about � times faster than a remote memory access on the
Butter�y Plus �in the absence of contention�� Therefore� all other things being equal� cache misses are
a greater percentage of the execution time of a program on the Iris than are remote memory references
on the Butter�y� Since memory�conscious scheduling reduces the number of cache misses and remote
memory references by roughly the same amount� it has a greater e	ect on the Iris than on the Butter�y�
As processor speeds continue to improve relative to memory speeds� locality management techniques
such as memory�conscious scheduling will provide even greater bene�ts on future machines�

There is another reason why memory�conscious scheduling is so e	ective on the Iris� The Iris
su	ers from bus contention when more than a few processors make frequent references to main mem�
ory� Any reduction in main memory references on the Iris due to memory�conscious scheduling will
reduce bus contention for the remaining references� further improving performance� The Butter�y�s
communication network� on the other hand� is relatively immune to contention� so a reduction in the



���

�

��

��

��

��

��

��

��

� � � � � � � �

Percentage
improvement

of MCS

Processors

Gauss �

�

�

�

�

� �

�

�

Grass�re �

�

�

�

�
�

�

�
�

Merge sort �

�

�

� �

Figure �� The e	ect of number of processors on memory�conscious scheduling�

number of remote references isn�t likely to have much e	ect on the remaining remote references�
Based on our experiments� we conclude that modern multiprocessors cannot e�ciently support

lightweight threads unless memory�conscious scheduling is used� If the thread scheduler does not pre�
serve a�nity� a coarse�grain decomposition will almost always out�perform a �ne�grain decomposition�
in some cases by a factor of � or more� This discrepancy cannot be attributed to thread management
operations� but is instead due to the excessive bus or network tra�c associated with the �ne�grain
decomposition� Memory�conscious scheduling removes much of the network tra�c associated with the
placement of �ne�grain threads� the remaining minor di	erence in performance is due to the cost of
creating and managing a large number of threads�

� Loop Scheduling

Although thread libraries provide a simple way to program parallel applications� many users prefer
to leave the work of decomposition� parallelization� and scheduling to the compiler� This is especially
true in the case of large sequential applications that have already been programmed in a sequential
language� Parallelizing these applications by hand is a tedious and time�consuming process� Thus�
parallelizing compilers are left with the task of parallelizing the application� The most prominent
source of parallelism in most sequential applications are loops� The unit of work that can be executed
in parallel is usually a loop iteration� The task of the compiler is to �nd which iterations can be
executed in parallel� One task of the run�time environment of a parallelizing compiler is to schedule
parallel iterations on processors� This task is called loop scheduling�

The simple static scheduling algorithm divides the number of loop iterations among the available
processors as evenly as possible� in the hope that each processor receives about the same amount of
work� This algorithm minimizes run�time synchronization overhead� but does not balance the load
dynamically�

The simplest dynamic algorithm for scheduling loop iterations is called self�scheduling 
Smith� �����
Tang and Yew� ����� In this algorithm� each processor repeatedly executes one iteration of the loop
until all iterations are executed� The algorithm relies on a central work queue of iterations� where
each idle processor gets one iteration� executes it� and repeats the same cycle until there are no more



iterations to execute� Self�scheduling achieves almost perfect load balancing� since all processors �nish
within one iteration of each other� Unfortunately� this algorithm incurs signi�cant synchronization
overhead� each iteration requires atomic access to the central work queue�

Uniform�sized chunking 
Kruskal andWeiss� ���� reduces synchronization overhead by having each
processor take K iterations� instead of one� This algorithm amortizes the cost of each synchronization
operation over the execution time ofK iterations� resulting in less synchronization overhead� Uniform�
sized chunking has a greater potential for imbalance than self�scheduling however� as processors �nish
within K iterations of each other in the worst case�

Guided self�scheduling 
Polychronopoulos and Kuck� ���� is a dynamic algorithm that changes
the size of chunks at run�time� allocating large chunks of iterations at the beginning of a loop so as to
reduce synchronization overhead� while allocating small chunks towards the end of the loop to balance
the workload� Under guided�self scheduling each processor is allocated ��P

th
of the remaining loop

iterations� where P is the number of processors� Assuming all loop iterations take the same amount
of time to complete� guided�self scheduling ensures that all processors �nish within one iteration of
each other and use the minimal number of synchronization operations�

In some cases guided�self scheduling might assign too much work to the �rst few processors� so that
the remaining iterations are not su�ciently time�consuming to balance the workload� This situation
arises when the initial iterations of a loop are much more time�consuming than later iterations� The
factoring algorithm 
Hummel et al�� ���� addresses this problem� Under factoring� allocation of loop
iterations to processors proceeds in phases� During each phase� only a subset of the remaining loop
iterations �usually half� is divided equally among the available processors� Because factoring allocates
a subset of the remaining iterations in each phase� it balances load better than guided�self scheduling
when the computation times of loop iterations vary substantially� In addition� the synchronization
overhead of factoring is not signi�cantly greater than that of guided�self scheduling�

Although guided�self scheduling minimizes the number of synchronization operations needed to
achieve perfect load balancing� the overhead of synchronization can become signi�cant in large�scale
systems with very expensive synchronization primitives� Trapezoid self�scheduling 
Tzen and Ni� ����
tries to reduce the need for synchronization� while still maintaining a reasonable balance in load� This
algorithm allocates large chunks of iterations to the �rst few processors� and successively smaller
chunks to the last few processors� The �rst chunk is of size N

�P
� and consecutive chunks di	er in

size N

�P�
iterations� The di	erence in the size of successive chunks is always a constant in trapezoid

self�scheduling� whereas it is a decreasing function both in guided�self scheduling and in factoring�
All of these loop scheduling algorithms attempt to balance the workload among the processors

without incurring substantial synchronization overhead� Each of the algorithms assumes that an
individual iteration takes the same amount of time to execute on every processor� This assumption
is not valid however on many shared�memory multiprocessors� The existence of memory that is
not equidistant from all processors �such as local memory or a processor cache� implies that some
processors are closer to the data required by an iteration than others� Loop iterations frequently have
an a�nity 
Squillante and Lazowska� ���� for a particular processor � the one whose local memory
or cache contains the required data� By exploiting processor a�nity� we can reduce the amount of
communication required to execute a parallel loop� and thereby improve performance�

��� A�nity Loop Scheduling

A�nity scheduling is based on the assumption that� in many cases� loop iterations have an a�nity for
a particular processor� In order for this assumption to hold� it must be the case that� ��� the same
data is used over and over by an iteration� and ��� the data is not removed from the local memory
�or cache� before it can be reused�

Data reuse is common in many applications� particularly those that employ iterative algorithms
wherein a parallel loop is nested within a sequential loop� In such cases� each iteration of the parallel
loop accesses the same �or nearby� data on successive iterations of the enclosing sequential loop�
During the �rst iteration of the sequential loop� each iteration of the nested parallel loop loads the
required data into the local memory or cache� where it may remain during subsequent iterations of
the enclosing sequential loop�



Data reuse may also occur in programs produced by a parallelizing compiler� Earlier work has
suggested that nested loops be interchanged in such a way as to reduce synchronization and commu�
nication overhead 
Gupta� ����� The resulting loop structure nests a parallel loop within a sequential
loop� again producing the desired form� If necessary� several parallel loops can be coalesced into one

Polychronopolous� �����

We consider the loop scheduling problem to have three dimensions� load imbalance� synchro�
nization overhead� and communication overhead due to non�local memory accesses� Our algorithm
for a�nity scheduling builds on previous work in loop scheduling� while also attempting to exploit
processor a�nity� The main ideas underlying the algorithm are�

� As with many known algorithms� we assign large chunks of iterations at the start of loop exe�
cution� so as to reduce the need for synchronization� and assign progressively smaller chunks to
balance the load�

� We use a deterministic assignment policy to ensure that an iteration is always assigned to the
same processor� After the �rst execution of the iteration� that processor will contain the required
data� so subsequent executions of the iteration will not need to load the data into local storage�

� We reassign a chunk to another processor �which also involves moving the required data� only
if necessary to balance the load� An idle processor removes chunks from another�s queue� and
executes them indivisibly� so an iteration is never reassigned more than once�

We assume that the underlying hardware or software implements a coherent memory� so that
data is copied into local storage when �rst accessed� This copy is implemented in hardware on
machines with coherent caches� such as the Symmetry� the Silicon Graphics machine� and the Kendall
Square Research multiprocessor� and may be implemented in the operating system on machines lacking
coherent caches� like the Butter�y 
Bolosky et al�� ����� Cox and Fowler� ����� LaRowe� Jr� and Ellis�
�����

Our a�nity scheduling algorithm divides the iterations of a loop into chunks of size dN�P e� where
N is the number of iterations in the loop� and P is the number of available processors� The ith chunk
of iterations is always placed on the local work queue of processor i� When a processor is idle� it
removes ��k of the iterations in its local work queue and executes them� x If a processor�s work queue
is empty� it �nds the most loaded processor� removes d��P e of the iterations in that processor�s work
queue� and executes them� �

Note that we distinguish between assigning a loop iteration to a processor�s work queue� and
executing the iteration on that processor� Initially� loop iterations are assigned to a processor�s
work queue in chunks of size ��P � so as to balance the load statically� Processors execute ��k of
the remaining iterations on their local work queue at a time� which corresponds to at most N�kP
iterations� Processors execute ��P of the remaining iterations from a remote work queue� which
corresponds to at most N�P � iterations�

Figure � contains a pseudocode description for the a�nity scheduling algorithm� Although we
implemented this algorithm by hand for our experiments� it could easily be incorporated into a par�
allelizing compiler�

There are two important di	erences between a�nity scheduling and previous dynamic loop schedul�
ing algorithms� First� the initial assignment of chunks to processors in a�nity scheduling is deter�
ministic� That is� processor i is always assigned the ith chunk of iterations to execute� For many
programs� this assignment ensures that repeated executions of the loop will access data that is al�
ready stored in the local memory or cache� Second� a�nity scheduling initially assumes that load
imbalance will not occur� and therefore assigns the same number of iterations to each processor�s
work queue� Each processor gets iterations from its own local work queue� accesses to di	erent work
queues can proceed in parallel� and each access is local� and therefore cheap� If load imbalance arises�
the algorithm migrates iterations from loaded processors to idle ones� Migrating iterations causes the

xThe constant k is a parameter of our algorithm� In most of our experiments we assume k equals P �
�Synchronization is required to remove iterations from a work queue� but not to check the load on a processor�



associated data to move twice in most cases� the data must �rst move to an idle processor to alleviate
load imbalance� and then move back to its original location to restore processor a�nity� However�
under a�nity scheduling this overhead is introduced only when load imbalance arises� whereas other
algorithms incur this overhead on every scheduling decision�

loop�initialization�N�P�

�� N is the number of loop iterations� P is the number of processors

�

for�i � � � i 	 P � i

� �

�� assign iterations ceil�i�N�P� to min�N�ceil��i
���N�P��

�� to processor i

assign�iterations�i�





loop �� executed by each processor

�� get ��k of the local iterations to execute

range � get�iterations�from�local�queue���k� �

if �range �� empty�

max�load � find�most�loaded�processor�� �

if �max�load �� nil� break �

�� get ��P of the iterations from the most loaded processor

range � get�iterations�from�nonlocal�queue�max�load���P��

if �range �� nil� break �

execute�range� �

forever

Figure �� Pseudocode for A�nity Scheduling

Despite these di	erences� a�nity scheduling has all the advantages of the best dynamic loop
scheduling algorithms� That is� it balances the load dynamically� minimizes synchronization� and is
immune to the arrival and departure of processors in the system�

��� Experimental Evaluation

We implemented the following loop scheduling algorithms by hand on the Silicon Graphics Iris� static
scheduling �STATIC�� self�scheduling �SS�� guided�self scheduling �GSS�� factoring �FACTORING��
trapezoid self�scheduling �TRAPEZOID�� a�nity scheduling with k � P �AFS�� and a hand�optimized
algorithm �BEST�STATIC�� BEST�STATIC represents our attempt at the best static assignment
possible� given complete knowledge of the application and its input� We implemented this assignment
by hand� after examining the application and the input� so as to maximize locality of reference and
minimize load imbalance� While not generally realizable� since it requires programmer intervention
and assumes knowledge of the application�s input� BEST�STATIC is a useful base�line for evaluating
other loop scheduling algorithms�

We selected �ve application programs that present loop scheduling algorithms a range of oppor�
tunities for addressing load imbalance� synchronization overhead� and communication overhead� Our
application suite contains the following programs�

� Successive Over�Relaxation �SOR��

DO SEQUENTIAL �� I � ��MAXITERATIONS

DO PARALLEL �� J � ��N

DO SEQUENTIAL �� K � ��N

A�J�K� � UPDATE�A�J�K�



�� CONTINUE

�� CONTINUE

�� CONTINUE

All iterations of the parallel loop take about the same time to execute� so better load balancing
algorithms are not likely to produce much better performance� However� the ith iteration of the
parallel loop always accesses the ith row of the matrix� so scheduling algorithms that exploit
processor a�nity are likely to produce better performance�

� Gaussian Elimination�

DO SEQUENTIAL �� K � ��N

DO PARALLEL �� I � K�N

DO SEQUENTIAL �� J � K���N	�

A
I�
J� �� A
K���
J� � A
i�
K���A
K���
K���

�� CONTINUE

�� CONTINUE

�� CONTINUE

This application exhibits some load imbalance across iterations� and o	ers some opportunities
for exploiting processor a�nity� Although successive executions of an iteration of the parallel
loop do not access exactly the same matrix elements each time� there is signi�cant overlap in
the elements referenced by successive executions of an iteration�

� Transitive Closure�

DO SEQUENTIAL �� K � ��N

DO PARALLEL �� J � ��N

IF �A�J�K� �EQ� TRUE� THEN

DO SEQUENTIAL �� I � ��N

IF �A�K�I� �EQ� TRUE� A�J�I� � TRUE

�� CONTINUE

�� CONTINUE

�� CONTINUE

The distinguishing characteristic of this application is that each iteration of the parallel loop
may take time O��� or O�N � �where the input matrix is of size N � N �� depending on the
input data� Since the input values determine the variation in iteration execution time� this
application serves to evaluate the e	ectiveness of load balancing for each scheduling algorithm�
This application also bene�ts from some form of a�nity scheduling� since the ith iteration of
the parallel loop always accesses the ith row of the matrix�

� Adjoint Convolution�

DO PARALLEL �� I � ��N�N

DO SEQUENTIAL �� K � I�N�N

A�I� � A�I� 	 X�B�K��C�I�K�

�� CONTINUE

�� CONTINUE

This application exhibits signi�cant load imbalance� the ith iteration of the parallel loop takes
time proportional to O�n�� i�� There is no a�nity to exploit however� so this application serves
to evaluate the e	ectiveness of load balancing in the absence of a�nity�



Table � summarizes the properties of our application suite with respect to load imbalance and
a�nity� If an application exhibits load imbalance� the iterations of the loop may take varying amounts
of computation time� so a static scheduling algorithm may not be appropriate� If an application
exhibits a�nity� we can improve performance by scheduling iterations appropriately�

Application Load imbalance A�nity
SOR none yes

Gauss elimination little yes
Transitive closure input dependent yes
Adjoint convolution large no

Table �� Load imbalance and a�nity characteristics of the application suite�

��� Comparison of Loop Scheduling Algorithms

In this section we compare the performance of the various loop scheduling algorithms on the SGI Iris�

�

��

��

��

��

� � � � � � � �

Time
�secs�

Processors

SS �

�

�

�
� �

GSS� FACTORING� TRAPEZOID �
�

�

� � �

AFS� BEST�STATIC� STATIC �

�

�

�

�
�

Figure �� Performance of loop scheduling algorithms for SOR�

Figure � presents the execution time �in seconds� of SOR �N � ���� running on � to � processors�
As can be seen in the �gure� self�scheduling �SS� performs the worst of all� due to its high synchroniza�
tion overhead� Other algorithms with lower synchronization overhead� such as GSS� FACTORING�
and TRAPEZOID� perform much better than SS because the small chunk size used by SS is of no
bene�t for an application in which there is no signi�cant di	erence in the execution time of itera�
tions� All of these algorithms perform worse than the algorithms that exploit a�nity� Both STATIC
and AFS are comparable to the best possible static algorithm� These results con�rm that a�nity
scheduling can improve the performance of loop scheduling algorithms�

Figure � plots the execution time of Gaussian elimination �N � ���� under the di	erent scheduling
algorithms� It is surprising to see that none of the scheduling algorithms that ignore processor a�nity
can e	ectively utilize more than two processors� There is simply too much contention for the shared bus
under these algorithms� since every iteration must load data into the local cache� SS performs worst
of all� because of its high synchronization overhead� but the performance di	erence narrows quickly as
the communication costs of GSS� FACTORING� and TRAPEZOID start to dominate synchronization



�

�

�

�

��

��

��

��

��

� � � � � � � �

Time
�secs�

Processors

SS �

�

�

� �
�

GSS� FACTORING� TRAPEZOID �

�

�
� � �

AFS� STATIC �

�

�

�

� �

BEST�STATIC ��

�

�
� �

Figure �� Performance of loop scheduling algorithms for Gaussian elimination�

costs� Once again� AFS and STATIC perform the best� they are very close to BEST�STATIC in the
worst case� and a factor of � better than the other dynamic loop scheduling algorithms� AFS and
STATIC can e	ectively use all � processors�

This application is a perfect example of the fact that the dominant source of overhead in many
applications is communication �caused by cache misses�� not synchronization� Loop scheduling algo�
rithms that focus on synchronization overhead alone perform poorly when compared to algorithms
that reduce communication overhead by exploiting processor a�nity�

Figure �� presents the completion time of the transitive closure application when given a skewed
input graph of ��� nodes containing a clique of ��� nodes� and no other edges� This is the �rst example

�

�

�

�

��

��

��

��

��

��

��

� � � � � � � �

Time
�secs�

Processors

GSS �
� �

�

�
�

STATIC �
� �

�

�
�

SS �

�

�

�

� �

TRAPEZOID �

�

�

�
� �

FACTORING �

�

�

�
� �

AFS �

�

�

�
� �

BEST�STATIC b

b

b

b

b
b

Figure ��� Performance of loop scheduling algorithms for transitive closure �skewed input��

where there is signi�cant imbalance in the computation across iterations� which explains why STATIC
performs poorly� Although SS manages to balance the load� it still su	ers from high synchronization



overhead� The surprising result in Figure �� is that GSS performs worst of all� Although GSS assigns
only ��Pth of the iterations to the �rst processor� those iterations contain ��Pth of the total work�
the remaining iterations do not contain enough work to balance the load� Both FACTORING and
TRAPEZOID start with a smaller initial chunk of iterations� and therefore balance the load better�
AFS has the same load balancing properties as FACTORING and TRAPEZOID� but exploits a�nity
as well�

Although AFS performs the best� the improvement over FACTORING and TRAPEZOID is at
most ���� The existence of signi�cant load imbalance forces an a�nity scheduler to override the initial
assignment of iterations to processors and instead execute iterations on any available idle processor�
Each time an iteration moves to another processor� the data must be loaded into a di	erent cache�
This is also why AFS does not perform as well as BEST�STATIC� which has knowledge of the input�
and is therefore able to distribute the clique nodes evenly among the processors� while maintaining
processor a�nity�

Figure �� presents the performance of the scheduling algorithms for adjoint convolution with
N � ��� Iterations have no a�nity for a particular processor in this application� since the parallel

�

�

�

�

�

�

�

�

� � � � � � � �

Time
�secs�

Processors

SS �

�

�

�

�
�

GSS� STATIC �

�

�

�

�

�

FACTORING �

�

�

�

�

�

AFS� BEST�STATIC� TRAPEZOID �

�

�

�

�

�

Figure ��� Performance of loop scheduling algorithms for adjoint convolution�

loop is not embedded within a sequential loop� There is signi�cant load imbalance across iterations
however� since the �rst iteration takes time proportional to O�N��� while the last iteration takes time
proportional to O���� As expected� loop scheduling algorithms that emphasize load balancing� such
as FACTORING� TRAPEZOID and AFS� perform the best� GSS and the static methods assign too
much work to the �rst few processors and su	er load imbalance as a result� SS again su	ers from high
synchronization overhead� These results are consistent with those reported in 
Hummel et al�� �����

We should note that a trivial change to our implementation of GSS would improve its performance
to be comparable to FACTORING� although not as good as AFS for these examples� Instead of taking
dN�P e iterations� each processor could take dN��kP �e iterations� where k is an appropriate constant�
With this change� GSS could start with smaller chunks� leaving more opportunities to balance the
load without introducing signi�cant synchronization overhead�

��� Increasing the Cost of Communication

Our experiments on the Iris con�rm that communication overhead is a dominant factor in application
performance on modern shared�memory multiprocessors� Why then do so many loop scheduling
algorithms ignore communication overhead� The answer lies in the changes in hardware that have



occurred over the last few years� RISC technology and �oating point co�processors have increased the
speed of computation dramatically� while memory and interconnection network speeds have improved
only modestly�

These trends in multiprocessor architecture shift the emphasis from computation costs to commu�
nication costs� and suggest a much greater need for scheduling algorithms that reduce communication�
In order to demonstrate this trend� we executed our Gaussian elimination program on a Sequent Sym�
metry S�� multiprocessor� a bus�based� cache�coherent machine that predates the Iris� The processors
on the Iris are about �� times faster than the processors on the Symmetry� but the peak bandwidth of
the Symmetry bus is �� MB�sec� while the peak bandwidth of the Iris bus is only �� MB�sec� Figure
�� plots the execution time of Gaussian elimination on a ��� by ��� matrix under three dynamic loop
scheduling algorithms on the Symmetry� From this �gure we can see that AFS and GSS are compa�
rable in performance on the Symmetry� while our earlier results showed that AFS clearly dominates
GSS on the Iris� We can conclude that the ability of AFS to exploit processor a�nity in Gaussian
elimination is of little value on the Symmetry� since communication is cheap relative to computation�

We also see in �gure �� that TRAPEZOID performs ������ worse than both AFS and GSS on
this application� The reason for this can be traced to the load balancing properties of TRAPEZOID�
When all iterations take the same time to execute� processors �nish within one iteration of each other
under guided�self scheduling 
Polychronopoulos and Kuck� ����� Under TRAPEZOID� processors
�nish within several iterations of each other 
Tzen and Ni� ����� When an iteration takes a long
time to complete� the imbalance introduced by the trapezoid algorithm can be noticeable� Although
the trapezoid algorithm requires fewer accesses to the work queue� the Sequent does not employ a
large number of processors� and therefore the low synchronization overhead of TRAPEZOID does not
outweigh the load imbalance it causes�

�

��

��

��

��

� � �� �� �� ��

Time
�secs�

Processors

GSS �

�

�

�

�

�

TRAPEZOID �

�

�

�

�

�

AFS �

�

�

�

�

�

Figure ��� Gaussian elimination on the Sequent Symmetry�

These results suggest that communicationwas a relatively minor source of overhead on the previous
generation of shared�memory multiprocessors� and that both load imbalance and synchronization
overhead were dominant� Our results on the Iris suggest that the situation has changed dramatically�
so much so that communication is now the dominant factor in performance� As processor speeds
continue to improve at a higher rate than either memory or interconnection network speeds� the
overhead of communication will likely increase even more� In fact� the discrepancy in processor and
memory speeds is already high enough that a breakthrough in memory and interconnection network
technology without continuing improvements in processor technology would be required to reduce the
signi�cance of communication in parallel applications� In short� communication is a dominant factor



in modern multiprocessors and there is no indication that the situation will change in the foreseeable
future� Any scheme designed to reduce communication overhead� such as a�nity scheduling� will
produce ever�greater returns as long as current trends continue�

��� Scaling the Number of Processors

To demonstrate the importance of a�nity scheduling on recent large�scale multiprocessors� we per�
formed several experiments on the Kendall Square KSR��� a large�scale� cache�coherent multiprocessor
released in ����� These experiments used only those applications that exhibit locality� i�e�� Gaussian
elimination� SOR� and transitive closure�

Figure �� presents the completion time of Gaussian elimination �using a ���� by ���� matrix�
under various loop scheduling algorithms on the KSR��� In this �gure we see that� once again�
AFS performs best� It improves the completion time of the application by a factor of ��� when
compared to FACTORING and GSS� and by a factor of ��� compared to TRAPEZOID� The reason
that TRAPEZOID performs better than FACTORING and GSS is that TRAPEZOID has the fewest
number of synchronization operations� and synchronization is relatively expensive on the KSR�

��

��

��

��

���

���

���

���

���

���

���

� � �� �� �� ��

Time
�secs�

Processors

GSS �

�

�

�

�

�
�

FACTORING �

�

�

�

� �

�

TRAPEZOID �
�

�

�

�
� �

MOD�FACTORING �

�

�

�
�

�

�

STATIC �

�

�

�
� � �

AFS �

�

�

�
� �

�

Figure ��� Gaussian elimination on the KSR���

Figure �� shows the completion time of transitive closure ����� node graph� where ��� of the
nodes form a clique� under the di	erent loop scheduling algorithms on the KSR��� From this �gure
we can see the importance of a�nity scheduling� the other dynamic scheduling algorithms cannot
exploit more than �� processors� After AFS� the next best algorithm is TRAPEZOID� which has
the smallest number of synchronization operations� and therefore manages to degrade more gracefully
than the other algorithms� Although AFS performs best� the improvement over the other algorithms
is not as great as it was for Gaussian elimination� There is almost no load imbalance in Gaussian
elimination� and hence no need to destroy any a�nity� whereas transitive closure does have load
imbalance and therefore a�nity scheduling must reassign iterations fairly frequently�



�

��

��

��

��

���

���

���

���

� � �� �� �� �� �� ��

Time
�secs�

Processors

MOD�FACTORING �

�

�
�

�

�

�

�

FACTORING �

�

� �

�

�

�

�

GSS �

�

�

�

�

�

�

�

TRAPEZOID �

�

�

� �

�

�

�

STATIC �

�

�

�

� � � �
�

AFS �

�

�

�
�

�
� �

Figure ��� Transitive closure on the KSR���

Figure �� presents the completion time of SOR ����� by ���� matrix and ��� iterations� on the
KSR��� Although AFS and STATIC perform the best in this case� they are not much better than
the other algorithms� even though SOR has a lot of a�nity to preserve� and there is almost no
load imbalance to hinder a�nity� So why isn�t AFS much better than the other algorithms� The
reason for this anomaly is that SOR performs a few �oating point additions and one �oating point
division within the inner loop� and �oating point division is implemented in software on the KSR���
Thus� computation in SOR is expensive on the KSR��� and the bene�ts of preserving a�nity are not
signi�cant in comparison�

� Conclusions

Most scheduling schemes in use today focus on the role of synchronization and load imbalance in
application performance� The increasing cost of communication in shared�memory multiprocessors
argues for new scheduling policies that reduce or eliminate communication� We have shown that the
operating system kernel� the thread library� and the compiler all have a role to play in reducing the
need for communication� Based on our experiments with a variety of shared�memory machines and
applications we conclude�

� In most cases� multiprogramming via hardware partitioning o�ers the best application perfor�
mance� In comparison to hardware partitions� time�sharing across the entire machine destroys
the a�nity a process may have built up with a processor� and signi�cantly increases overhead
due to synchronization� Coscheduling alleviates the overhead due to synchronization� but results
in increased cache corruption and more remote references when compared with hardware parti�
tions� In addition� coscheduling is rarely ���� e	ective� as most parallel programs are unable
to fully utilize all processors for the lifetime of the program�



�

��

���

���

���

���

���

���

� � �� �� �� �� �� �� ��

Time
�secs�

Processors

GSS �

�

�

�

�

�

�

�
�

�

FACTORING �

�

�

�

�

�

�
�

� �

MOD�FACTORING �

�

�

�

�

�

�
�

� �

TRAPEZOID �

�

�

�

�

�

�
�

� �

STATIC �

�

�

�

�

�
�

�

�

�

AFS �

�

�

�

�

�

�

�
�

�

Figure ��� SOR on the KSR���

� At any level in the system� central work queues are an inappropriate scheduling mechanism�
even for small�scale multiprocessors� Central work queues require the frequent movement of
data among processors� since every process must load the data it needs into the local cache�
The resulting communication overhead degrades performance even for a very small number of
processors�

� Both thread and loop scheduling algorithms must consider communication as an important source
of overhead� Algorithms that ignore communication overhead incur a signi�cant performance
penalty on modern multiprocessors� If processor speeds continue to improve more quickly than
memory or interconnection speeds� communicationwill be an increasing percentage of an applica�
tion�s execution time� scheduling methods that reduce both communication and synchronization
overhead are going to have an even greater impact in the future�

If current trends continue� it will be increasingly di�cult for parallel applications to utilize large�
scale multiprocessors e	ectively� One way to address these problems is to recognize the dominant role
of communication in current systems� and to adopt techniques for reducing communication in parallel
programs� Cache architecture sensitive parallel application restructuring �CASPAR� 
Cheriton et al��
����� latency�tolerant techniques 
Agarwal et al�� ����� Gupta et al�� ����a� and the scheduling
schemes discussed here are all steps in the right direction� These techniques will be even more
important in the future if shared�memory machines are to be used e�ciently for parallel programming�

Acknowledgements

The authors would like to thank Prakash Das� Mark Crovella and Cezary Dubnicki for providing many
of the experimental results in section �� We would like to thank Argonne National Laboratory for
allowing us to use their Sequent Symmetry� and Donna Bergmark and the Cornell Theory Center for



assistance with and use of their KSR��� This work was supported by the National Science Foundation
under grants CDA�������� and CCR��������� and the O�ce of Naval Research Contract No� N������
���J����� �in conjunction with the DARPA HPCC program� ARPA Order No� ������

References


Agarwal et al�� ���� A� Agarwal� B��H� Lim� D� Kranz� and J� Kubiatowicz� �APRIL� A Processor
Architecture for Multiprocessing�� In Proceedings of the Seventeenth International Symposium on
Computer Architecture� pages ��� ���� May �����


Anderson et al�� ����a T� E� Anderson� B� N� Bershad� E� D� Lazowska� and H� M� Levy� �Sched�
uler Activations� E	ective Kernel Support for the User�Level Management of Parallelism�� In
Proceedings of the Thirteenth Symposium on Operating Systems Principles� pages �� ��� October
�����


Anderson et al�� ���� T� E� Anderson� E� D� Lazowska� and H� M� Levy� �The Performance Implica�
tions of Thread Management Alternatives for Shared Memory Multiprocessors�� IEEE Transactions
on Computers� ����������� ����� December �����


Anderson et al�� ����b T�E� Anderson� H�M� Levy� B�N� Bershad� and E�D� Lazowska� �The In�
teraction of Architecture and Operating System Design�� In Proceedings of the �th International
Conference on Architectural Support for Programming Languages and Operating Systems� pages
��� ���� April �����


Bershad et al�� ���� B�N� Bershad� E�D� Lazowska� H�M� Levy� and D�B� Wagner� �An Open En�
vironment for Building Parallel Programming Systems�� In Proceedings of the ACM�SIGPLAN
PPEALS �	

 Symposium on Parallel Programming� Experience with Applications� Languages�
and Systems� pages � �� July �����


Black� ���� D� L� Black� �Scheduling Support for Concurrency and Parallelism in the Mach Oper�
ating System�� IEEE Computer� �������� ��� May �����


Bokhari� ���� S� H� Bokhari� Assignment problems in parallel and distributed computing� Kluwer
Academic Publishers� Boston� �����


Bolosky et al�� ���� W�J� Bolosky� R�P� Fitzgerald� and M�L� Scott� �Simple But E	ective Tech�
niques for NUMA Memory Management�� In Proceedings of the ��th Symposium on Operating
Systems Principles� pages �� ��� December �����


Cheriton et al�� ���� D� R� Cheriton� H� A� Goosen� and P� Machanick� �Restructuring a Parallel
Simulation to Improve Cache Behavior in a Shared�Memory Multiprocessor� A First Experience��
In Proceedings of the International Symposium on Shared�Memory Multiprocessing� pages ��� ����
�����


Cox and Fowler� ���� A�L� Cox and R�J� Fowler� �The Implementation of a Coherent Memory
Abstraction on a NUMA Multiprocessor� Experiences with PLATINUM�� In Proceedings of the
��th Symposium on Operating Systems Principles� pages �� ��� December �����


Doeppner Jr�� ���� T� W� Doeppner Jr�� �Threads� A System for the Support of Concurrent Pro�
gramming�� Technical Report CS������� Department of Computer Science� Brown University� �����


Gupta et al�� ����a A� Gupta� J� Hennessy� K� Gharachorloo� T� Mowry� and W��D� Weber� �Com�
parative Evaluation of Latency Reducing and Tolerating Techniques�� In Proceedings of the �
th
International Symposium on Computer Architecture� pages ��� ���� May �����




Gupta et al�� ����b A� Gupta� A� Tucker� and S� Urushibara� �The Impact of Operating System
Scheduling Policies and Synchronization Methods on the Performance of Parallel Applications�� In
Proceedings of the �		� ACM SIGMETRICS Conference on Measurement and Modeling of Com�
puter Systems� pages ��� ���� May �����


Gupta� ���� R� Gupta� �Synchronization and CommunicationCosts of Loop Partitioning on Shared�
Memory Multiprocessor Systems�� In Proceedings of the International Conference on Parallel Pro�
cessing� pages II��� ��� August �����


Hummel et al�� ���� S�F� Hummel� E� Schonberg� and L�E� Flynn� �Factoring� A Practical and
Robust Method for Scheduling Parallel Loops�� Communications of the ACM� �������� ���� August
�����


Kruskal and Weiss� ���� C�P� Kruskal and A� Weiss� �Allocating Independent Subtasks on Parallel
Processors�� IEEE Transactions on Software Engineering� ����������� ����� �����


LaRowe� Jr� and Ellis� ���� R� P� LaRowe� Jr� and C� S� Ellis� �Experimental Comparison of Mem�
ory Management Policies for NUMA Multiprocessors�� ACM Transactions on Computer Systems�
�������� ���� November �����


Leutenegger� ���� S� T� Leutenegger� Issues in Multiprogrammed Multiprocessor Scheduling� PhD
thesis� University of Wisconsin�Madison� August �����


Lo and Gligor� ����b S��P� Lo and V�D� Gligor� �Properties of Multiprocessor Scheduling Algo�
rithms�� In Proceedings of the International Conference on Parallel Processing� August �����


Lo and Gligor� ����a S��P� Lo and V�D� Gligor� �A Comparative Analysis of Multiprocessor Schedul�
ing Algorithms�� In Proceedings th International Conference on Distributed Computing Systems�
pages ��� ���� September �����


Marsh et al�� ���� B�D� Marsh� M�L� Scott� T�J� LeBlanc� and E�P� Markatos� �First Class User�
Level Threads�� In Proceedings of the ��th Symposium on Operating Systems Principles� pages
��� ���� October �����


McCann et al�� ���� C� McCann� R� Vaswani� and J� Zahorjan� �A Dynamic Processor Allocation
Policy for Multiprogrammed Shared Memory Multiprocessors�� ACM Transactions on Computer
Systems� ������ May ����� Also published as Technical Report ��������� University of Washington�
March ���� �Revised February ������


Mellor�Crummey and Scott� ���� J� M� Mellor�Crummey and M� L� Scott� �Algorithms for Scalable
Synchronization on Shared�Memory Multiprocessors�� ACM Transactions on Computer Systems�
������� ��� �����


Ousterhout� ���� J� K� Ousterhout� �Scheduling Techniques for Concurrent Systems�� In Proceed�
ings of Distributed Computing Systems� pages �� ��� October �����


Ousterhout� ���� John Ousterhout� �Why Aren�t Operating Systems Getting Faster as Fast as
Hardware��� Proceedings of the Summer �		� USENIX Conference� pages ��� ���� June �����


Polychronopolous� ���� C� D� Polychronopolous� Parallel Programming and Compilers� Kluwer
Academic Publishers� Boston� MA� �����


Polychronopoulos and Kuck� ���� C� D� Polychronopoulos and D� J� Kuck� �Guided Self�Scheduling�
A Practical Scheduling Scheme for Parallel Supercomputers�� IEEE Transactions on Computers�
C�������� December �����


Scott et al�� ���� M�L� Scott� T�J� LeBlanc� and B�D� Marsh� �Multi�Model Parallel Programming
in Psyche�� In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming� pages �� ��� March �����




Smith� ���� B� Smith� �Architecture and Applications of the HEP Computer System�� In Proceed�
ings of the SPIE� Real�Time Signal Processing IV� �����


Squillante and Lazowska� ���� M� S� Squillante and E�D� Lazowska� �Using Processor�Cache A�nity
Information in Shared�Memory Multiprocessor Scheduling�� Technical Report ��������� Computer
Science Department� University of Washington� February �����


Sun Microsystems� Inc�� ���� Sun Microsystems� Inc�� �Lightweight Processes�� In SunOS Program�
ming Utilities and Libraries� March ����� Sun Part Number ������������


Tang and Yew� ���� P� Tang and P��C� Yew� �Processor Self�Scheduling for Multiple Nested Par�
allel Loops�� In Proceedings �	
� International Conference on Parallel Processing� pages ��� ����
August �����


Thomas and Crowther� ���� R�H� Thomas and W� Crowther� �The Uniform System� An Approach
to Runtime Support for Large Scale Shared Memory Parallel Processors�� In Proceedings of the
�	

 International Conference on Parallel Processing� pages ��� ���� August �����


Tucker and Gupta� ���� A� Tucker and A� Gupta� �Process Control and Scheduling Issues for Multi�
programmed Shared�Memory Multiprocessors�� In Proceedings of the ��th Symposium on Operating
Systems Principles� pages ��� ���� December �����


Tzen and Ni� ���� T�H� Tzen and L�M� Ni� �Trapezoid Self�Scheduling� A Practical Scheduling
Scheme for Parallel Computers�� IEEE Transactions on Parallel and Distributed Systems� ������� 
��� January �����


Vaswani and Zahorjan� ���� R� Vaswani and J� Zahorjan� �The Implications of Cache A�nity on
Processor Scheduling for Multiprogrammed� Shared Memory Multiprocessors�� In Proceedings of
the Thirteenth Sumposium on Operating Systems Principles� pages �� ��� October �����


Weiser et al�� ���� M� Weiser� A� Demers� and C� Hauser� �The Portable Common Runtime Ap�
proach to Interoperability�� In Proceedings of the ��th Sumposium on Operating Systems Principles�
pages ��� ���� December �����


Zahorjan and McCann� ���� J� Zahorjan and C� McCann� �Processor Scheduling in Shared Memory
Multiprocessors�� In Proceedings of the �		� ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems� pages ��� ���� May �����


