FORTH/ICS/TR/030 July 1993

TRACE-DRIVEN SIMULATION OF DATA-ALIGNMENT
AND OTHER FACTORS AFFECTING UPDATE AND
INVALIDATE BASED COHERENT MEMORY

Evangelos P. Markatos™ and Catherine E. Chronaki*

Abstract

The exploitation of locality of reference in shared memory multipro-
cessors 1s one of the most important problems in parallel processing
today. Locality can be managed in several levels: hardware, operating
system, runtime environment of the compiler, user level.

In this paper we investigate the problem of exploiting locality at the
operating system level and its interactions with the compiler and the
architecture. Our main conclusion, based on trace-driven simulations
of real applications, is that exploitation of locality is effective only if
all three levels cooperate. The compiler should do sophisticated data
alignment, the operating system should perform on-line caching and
page replication, while the architecture should provide simple but ef-
fective hardware mechanisms that assist the operating system in avoid-
ing unnecessary movement of data.

*Institute of Computer Science, F.O.R.T.H.
E-mail {markatos,chronaki}@csi.forth.gr or {markatos,chronaki}@ariadne.bitnet

1 Introduction

The exploitation of locality of reference in shared memory multiprocessors is one of the most important
problems in parallel processing today. Locality can be managed in several levels: hardware, operating
system, runtime environment of the compiler, user level.

One way to exploit locality at any level is by bringing data close to the processor that references
them. Hardware does this transparently by bringing data to local caches and keeping all caches
coherent by using a cache coherence protocol [1]. The operating system may perform this same
function by replicating pages close to processors. The user may do the same thing by explicitly
copying data in the parallel program. Although bus-based multiprocessors [18, 19], and several large-
scale multiprocessors [8] make use of hardware coherent caches, software coherence implemented in
the operating system/run time system is starting to become more attractive for several reasons:

e Software protocols can afford to be more sophisticated than hardware protocols. They can be
debugged easier and changed easily.

e Hardware protocols start to loose the traditional advantage of speed that they had over software
protocols, because the overhead of locality management is dominated by data transfers, and not
by code execution. As processors are getting faster and faster than memories [17], the cost of
operating system code execution compared to the cost of a data transfers is getting lower. Given
the fact that both hardware and software protocols have to pay the cost of data transfer, the
portion of the protocol execution that hardware can speed up is decreasing with time.

e Protocols implemented at the operating system level manage locality transparently, just like
hardware implemented protocols. Thus, the user does not need to explicitly program locality,
nevertheless (s)he may supply hints to the compiler or the operating system.

e Hardware protocols have a high implementation cost, especially when large directory structures
are needed. The cost of keeping large directories in hardware, and reading/updating one or more
directory words in each processor cycle (which is typically a few nanoseconds) is prohibitive for
most parallel machines.

In this paper we address locality of reference for distributed shared memory systems mostly at
the operating system and run time system levels; the use of limited hardware support is also studied
in some cases. The fundamental mechanism for exploiting locality in the operating system level is
replicating pages close to processors that frequently use them. Page replication may result to up to an
order of magnitude performance improvement, since local memory accesses are often about an order
of magnitude faster than remote memory access. Unfortunately, the existence of multiple copies of
the same page, introduces the problem of memory coherence. That is, when one processor updates
its local copy of a page, the other processors that have a copy of the same page need to be informed
of the change.

The developer of a memory coherence protocol in software has to evaluate several trade-offs and
make a number of important decisions. In this paper we examine and evaluate four of these issues as

described below.

1.1 TUpdate-based or Invalidate-based protocols?

Suppose that shared data have been replicated to several processors, and a processor wants to update
a shared datum in its local memory. Then, all other copies of the datum need to be updated, so
that all processors have a consistent view of memory. This update can be done using one of two
mechanisms:

(a) Invalidate of all copies of the page where the datum resides, except for the writer’s.
The next time a processor, besides the writer, wants to read or write a datum on that
page, it will page-fault and request a new copy.

(b) Update all existing copies of the datum by sending a message to all processors that
have a copy of the page where the datum resides. The message contains the address of the
data that changed and the new value.

Invalidate-based mechanisms are generally simple and can be implemented completely in software.
That’s why most operating system protocols developed so far, use it. Their main drawback is that
the unit of invalidation is the page. If pages are large, invalidations may result in frequent page faults
and expensive page replications. Page bouncing [14], the phenomenon where a page is constantly
invalidated and replicated, is not unusual in memory coherence systems.

Update-based mechanisms are more complicated and need some hardware support to perform non-
local updates. Nevertheless only the necessary information is transferred over the network. Update-
based protocols are best suited for the producer/consumer data reference pattern: the producer
updates the common data buffer, and the hardware sends the updates to the consumer transparently.
When the consumer will later need to access the produced data, the data will be in its local memory.
However, this mechanism is not well suited when there are multiple execution phases in which a datum
is first used by one subset of the processors and then by another. A processor that does not need
updates for some datum anymore will still receive them, at the cost of higher network traffic.

The results of our experiments indicate that protocols based on updates are almost always better
than those based on invalidates (see section 3.2).

1.2 Small or Large Page size?

In a memory coherent system, the unit of sharing and coherence is usually the page. Large page
sizes may increase the amount of false sharing* significantly. It is much more probable to have false
sharing in a 64K page, than in a 256 byte page (or cache line). Small page sizes, on the other hand,
may increase the operating system overhead. For example, if a range of memory will eventually be
replicated to a processor, replicating it in small pages, and taking one fault for each page is rather
expensive. Small page sizes, also increase the number of TLB misses, which may also sum up to a
considerable cost. Our experiments indicate that larger pages generally result in worse performance.
The effect of large page size on invalidate-based protocols is very pronounced. The performance
penalty in update-based protocols increases very slowly with the page size, and sometimes, it even
decreases with the page size.

1.3 With a little help from the hardware? The role of hardware counters.

Hardware counters may be used to assist the system software in making informed decisions about
replicating pages. For example, several protocols (esp. the hardware ones) replicate a page the first
time it is accessed by the processor. What we would like instead is to replicate a page only after we
make sure that the cost of the replication will be offset by the benefits of replication. Thus, we would
like to replicate a page, only if we know that the processor will make frequent use of it. Bolosky [4]
proposes the use of a hardware counter, that counts the number of non-local accesses to the page, as

* A page is falsely shared if it is accessed by at least two processors, at least one of which updates it, but the processors
do not access the same memory location in the page.

an indication of the frequency of use of a page by a processor. Only after the processor has made a
specified number of non-local accesses, is the page replicated locally.

Hardware counters at a small additional cost improve the performance of coherence protocols, and
provide a useful mechanism for eliminating page bouncing (see section 3.3).

1.4 Can sophisticated data alignment reduce False Sharing?

The applications we use have been compiled with a traditional compiler that does not attempt to do
any sophisticated data alignment. Thus, it is possible that data with different access patterns will all
end up in the same page. Such cases introduce significant false sharing. If a page is falsely shared, the
memory coherence policy has no good solution. Say for example that processor P; frequently reads and
updates one memory location of some page, while processor P; frequently reads and updates another
memory location of the same page. If the page is replicated to both processors, a large number of
updates (or invalidates) will travel over the communication network. If the page is replicated to one
processor only, the other will make all its operations remotely. In both cases, the memory coherence
policy has no good solution. The right solution for this case is to allocate the data that correspond
to two different locations on different pages, so that each page can be replicated to the processor that
accesses it, and no information will have to travel over the interconnection network.

Our experiments suggest that sophisticated data alignment is the single most important source of
performance improvement. This fact calls for a cooperation between the compiler and the operating
system to solve the false sharing problem together (see section 3.4).

The next section provides and overview of the previous work and places our contributions in
context. Section 3 presents our experiments and answers to the above stated questions. Finally,
section 4 summarizes our results and presents our conclusions.

2 Previous Work

Memory coherence is an active area of research. Several implementations of memory coherence pro-
tocols exist in shared-memory multiprocessors [15, 7, 5, 12, 13]. A lot of work has also been done in
implementing coherent memory in message-passing multiprocessors [16, 10].

Bolosky et. al [4] have compared several memory coherence policies. In a companion paper [3] he
has shown that the dominant overhead in memory coherence policies is false sharing, which can be
significantly reduced by decreasing the page size.

Eggers and Katz [9] have evaluated the performance trade offs of invalidate and update-based
cache-coherence protocols, for small scale bus-based multiprocessors that use snooping cache coherence
protocols. Her results were not conclusive towards any kind of protocols, and concluded that each
protocol outperforms the others under the appropriate conditions.

Veenstra and Fowler [21, 20] have compared invalidate and update-based cache-coherence protocols.
They conclude that for large cache lines update-based protocols are better. They also conclude that
a hybrid protocol that combines both updates and invalidates is always the best.

Our work differs from previous work in memory coherency protocols in several aspects:

e We take into account the effect of sophisticated date alignment in the performance of the
memory coherence protocol. Thus, we quantify not only the performance of memory coherence
protocols on given applications, but also how much overhead is tnherent to the application, and
how much is attributed to naive data alignment decisions made by the compiler.

o We quantify the use of hardware counters for memory coherence protocols. Although some of the
effects of hardware counters had been quantified before ([4]), their interaction with sophisticated
data re-alignment, and update-based policies has not been quantified. Such a quantification is
important to make sure that hardware counters are a generally useful hardware mechanism.

e We quantify the relative trade offs of update-based and invalidation-based protocols for large-
scale multiprocessors. Although, some of relevant trade offs have been studied [9], that study
was done in the domain of small scale hardware cache-coherent bus-based multiprocessors. We
are interested in studying the alternatives in large scale multiprocessors, that support software
coherence.

e Our study applies in virtual shared memory systems where caching and coherency is under the
operating system control (with a little help from the hardware), while most previous studies
have focused on hardware cache-coherent systems.

3 Experiments

3.1 Experimental Environment
3.1.1 The traces

To evaluate the tradeoffs in the design of a memory coherency policy, we use trace-driven simulation.
Trace-drive simulation consists of feeding the traces (memory access patterns) of an application into
a simulation that accurately simulates a memory coherence protocol. For each trace record, the
simulator:

e Examines the action it needs to perform (read or write) and the address it needs to access.
e Simulates the necessary replication, invalidation, update and other actions it needs to take.

e Updates the cost metrics depending on the number and the kind of actions it took in the previous
step.

The traces we use are 64-processor traces gathered from four programs: FFT, SIMPLE, WEATHER
and SPEECH [6]. FFT is a fast Fourier transform. SPEECH is the lexical decoding stage of a pho-
netically based spoken language understanding system. WEATHER is an application for weather
simulation based on a grid method to solve a set of partial differential equations. SIMPLE models
the behavior of fluids and solves equations describing hydrodynamic behavior. The following table
describes the applications further:

Apolicati Length working set size L

PPUCANON 1 (i)) million refs) | (in MB) anguage
FFT 7.44 0.25 FORTRAN
SIMPLE 27.03 2.5 FORTRAN
WEATHER 31.76 5.4 FORTRAN
SPEECH 11.77 2.1 Mul-T (Multilisp)

3.1.2 The multiprocessor

We simulated a shared-memory multiprocessor. Each processor has a portion of the shared-memory
local to it, but it can also reference the shared-memory of the other processors. Such references are
called non-local or remote memory accesses, and are considerably more expensive than local memory
accesses. To avoid non-local memory accesses, processors may replicate a page, and map it in the
page table as local. Thus, all future accesses to this page will be local. When a processor updates
a page, the protocol can either invalidate all other existing copies, or send the update to all other
existing coples of the page. We simulate both protocols.

The parameters of the architecture we used are shown in table 1. Network latency is the time
its takes for a message to do a round-trip travel in the interconnection network of the multiprocessor
system. Local memory access is the time it takes to access local memory. Remote memory read
is the time it takes to read a non-local memory location and is the sum of network latency, the

parameter cost (in cycles)
network latency 90
local memory access 5
remote memory read 100
remote memory write 10
cycles to transfer a word in replication mode 4
page fault overhead 500

Table 1: Architecture Overheads

local memory access, and some small additional hardware overhead. Remote memory write is the
time to do a non-local write and is set to a cost slightly higher than the local memory access, but
significantly lower than the remote memory read, because write operations do not have to stall the
processor, until they are actually performed [11]. In our simulated system system we assume the
existence of a “block transfer” mode like the one that exists in the BBN Butterfly family of large scale
multiprocessors [2], where pages and long messages in general are not transferred a word at a time,
so the amortized cost for each word transfer is considerably lower than the cost of a remote-memory
access. Finally, the page fault overhead is the cost of operating system code execution and it does
not include to cost of data transfer.

3.1.3 Performance Measurements

The performance criterion we used is normalized average memory access latency. This is the time it
takes to do an average memory reference, to the time it takes to do a local memory reference. So,
if the normalized average memory access cost is two, then the average memory access took twice as
much as it would have taken if all data were in the local memory. Our results report average memory
access latency for different page sizes ranging from 64 bytes, to 64 Kbytes. Page size in the horizontal
axis of all figures runs in units of log base 2 of the page size. In all our experiments we measure
the memory latency for the shared-memory operations only.! For non-shared memory operations,
memory coherency protocols are not needed as no two processors will ever change a non-shared
memory location. Thus, accesses to non-shared memory locations are not entered into averaging.
To put the performance of memory coherence protocols in perspective, our performance graphs also
include an “all local” and an “all remote” line. The later represents the performance of the protocol
that fixes all shared-memory words to a remote memory and never replicates. The former represents
the ideal case where all shared-memory words are local, and no overhead is needed to make all copies
consistent. This, of course, is not a realizable protocol, but serves as a lower bound for any policy.

Good policies should be between the two lines. Although, no policy will ever cross the lower
bound, it is very easy for a policy to cross the upper bound. This happens especially when pages are
frequently replicated, but all the words in the page are not accessed frequently enough to offset the
cost of replication.

3.2 Updates versus Invalidates

We simulated update-based and invalidation-based protocols. The simplest update-based protocol
(called UPT) works as follows:

e Suppose processor P wants to read memory location M: If P has a local copy of the page that
contains M, it just reads M. Otherwise, it replicates the page that contains M locally. Once a
replication is made, P keeps the page that contains M locally forever.

tShared-memory is a region of memory known to the compiler and the operating system.

o When processor P wants to write memory location M: If P has a local copy of the page that
contains M, it performs a local write and sends the updated value to all processors that have a
copy of the page. The write operation returns as soon as the local write operation completes,
and does not wait for all copies to be updated first. If P does not have a local copy of the page,
it maps the page remotely, and sends the update to the remote page.

The simplest invalidate-based policy (called INV) works as follows:

e Suppose processor P wants to read memory location M: If P has a local copy of the page that
contains M, it just reads M. Otherwise, it replicates the page that contains M locally.

o When processor P wants to write memory location M: P first invalidates all replicas of the page
that contains M that may exist, and then performs the write on M.

One major performance problem with INV, is that is may lead to page bouncing. Because each
update operation invalidates all other copies, the next read operation (by a different processor than
the writer) will fault, and a new copy of the page will be replicated. If different processors frequently
read and write the same page (but not necessarily the same memory location), then each read access
that follows an update by another processors will result in a page fault and a page replication. For
a page size of 1Kbytes, this overhead may sum up to something more than 1500 cycles. Paying a
cost of 1500 cycles (256 words X 4 cycles/word + 500 cycles OS overhead) for just a read operation
seems intolerable, especially given the fact that remote read operations cost 100 cycles, which is an
order of magnitude lower. Thus, we augmented the INV policy with a freezing (called INV.FREEZ)
mechanism:

When a processor faults on a read access, it checks to see if the page was recently invali-
dated. In this case, the page is declared frozen, and will not be replicated again.

If the page was recently invalidated, then (according to the principle of locality) it will probably
be invalidated in the near future. Thus, a page replication will probably not offset its cost, as it will
probably be followed by a page invalidation.

To adapt to changing reference patterns frozen pages are defrost periodically.

Figures 1-4 present the results of executing the above memory coherence protocols on the described
traces.

Fig. 1 presents the performance of the protocols for FFT, and the “all local” and “all remote”
lines which demonstrate the performance of the FFT application when all shared data are local and
all shared data are remote respectively. We see that nearly all protocols perform very bad. They all
perform close to, or much worse than the “all remote” case. This may sound surprising, as the worst be-
havior that one would expect from a caching policy, is the one where no data are local. Unfortunately,
this is not so. Memory coherence policies incur a high cost at each replication/migration/invalidation
operation. All policies stride to reduce this cost, and maximize the benefits of a page replication, or
similar operation. If, for example, a 64K page is replicated, but the processor is going to access only
a few elements of the page, then that was a wrong decision, whose cost has already been paid, but
whose benefit will never be realized.

The rest of the applications are described in figures 2-4. We see that almost all behave in a similar
manner. The INV policy is consistently the worst (at least for large page sizes). The cost of accessing
shared memory for the INV policy increases linearly (or superlinearly) with page size. This can be
attributed to the following effects:

1. Large page sizes may increase the number of falsely shared locations, which may increase the
number of read accesses that fault on a recently invalidated page, which increases the number
of times a page is replicated (unless we use freezing).

2. Even when the number of read accesses that follow a write access does not increase with the
page size, the cost of replicating a page for each of these accesses increases linearly with the
page size.

10000 . . . |

INV —-—
- UPT —+—

1000 INV.FREEZ o - 4
E all remote - - -]
1l local —]
Memory A foca T
Access100 ¢ El
Cost E L
10 | o 4

1]]]]
4 6 8 10 12 16

Log of Page Size (in Bytes)
Figure 1: FFT

10000 g I I I I 3
F INV ——]
- UPT — 1
1000 ¢ INV.FREEZ o - 4
F all remote - - - 3
1l local —]
Memory A foca T
Access100 F =
Cost E]
_______________ . —
10 E

1]]]]
4 6 8 10 12 16

Log of Page Size (in Bytes)

Figure 2: SIMPLEX

10000 , : : | | _
INV —— E
- UPT —+—]
1000 INV.FREEZ ‘o - .
: all remote - - - 3
1l local —]
Memory atfoca -
Access100 ¢ =
Cost E]
10 L G R [G _;
1]]]]]
4 6 8 10 12 14 16
Log of Page Size (in Bytes)
Figure 3: SPEECH

10000 : , : | | i
; INV —-— 3
- UPT +— i

1000 ¢ INV.FREEZ o -

F all remote - - -

Memory

all local —

Access100 =
Cost 3]
o T T LRI %
10 ¢ E
1 1 1 1 1 1
4 6 8 10 12 14 16

Log of Page Size (in Bytes)

Figure 4: WEATHER

If just the second of the above factors occurred, then the increase in the cost of memory access would
be due to the increase in the cost of replication, which is linear to the page size. If both of the above
factors occur, system software has to replicate larger pages, more often, which results in a superlinear
increase of the memory access cost.

The performance of the INV.FREEZ policy verifies that it is the excessive page replication which is
the main source of overhead for the INV policy. Indeed, when pages are frozen in remote memory, the
cost of INV.FREEZ does not increase with page size, but, unfortunately, it is close to the “all remote”
case. The UPT policy is almost always better than the INV policy, because it avoids page bouncing.
It is, however, close to INV.FREEZ, because its does not have a mechanism to avoid sending updates
to processors that do not need them any more. INV and INV.FREEZ avoid traffic to processors that
do not use pages any more, by invalidating the unused pages on the first write.

3.3 The effect of hardware counters

All the previously studied policies were eager to replicate a page on the first access. There are at least
two reasons behind this choice:

e It is easy to make a decision the first time the page is encountered, rather than delegate the
decision for later.

e A page can be replicated only when the processor runs operating system code. This code runs
as a result of a page fault. If the page is not replicated during the service of the fault, the system
has two choices:

— Map the page remotely: the page table indicates that the page is remote, and all future
accesses to the page are remote. This solution may lead to having a page mapped remotely
for too long.

— Do not map the page: the next access to the page will create a new page fault and the
system will again have the opportunity, to replicate the page or not. This choice may
result in a large number of page-faults before each page is replicated, which may result in
a significant operating system overhead.

Bolosky et. al [4] have proposed the use of hardware counters, that count accesses to remotely
mapped pages. The counter starts from a given value, and when it reaches zero, it sends an interrupt
to the operating system. The operating system as a response to the interrupt, replicates the page and
maps 1t locally. In this way, the operating system uses past reference history as an indication of the
future reference history, assuming that an application which has made several accesses to a page, will
probably make more accesses to it in the near future, so it is worthwhile replicating the page locally.
We have adapted all previously described policies to include this optimization. When the application
faults for the first time on a page, the operating system sets a counter to one eighth of the size of
the page (in bytes). Each time the application access the page, the counter is decremented. When
the counter reaches zero, it sends an interrupt, which gives control to the operating system, which
replicates the page locally.

Figures 5-8 show the performance of memory coherence protocols both with and without the
hardware counter. Protocols that have a .DEL suffix are the same as their counterparts that do not
have the suffix, except for their use of the hardware counter to effectively DELay page replication.
We generally see that the hardware counter is a good idea. The policies that are augmented with
the hardware counter perform much better than their counterparts that do not make use of it. The
most spectacular improvement is to the INV policy. For example, in figure 6, for 64K page size, the
memory access cost for the SPEECH application, running under the INV protocol is about 7000. The
same protocol augmented with the hardware counter results in memory access cost of about 17. These
experiments show that hardware counters are especially helpful in bounding the worst performance
of the INV policy. Thus, hardware counters can be used as a mechanism to control page bouncing.

10

T UPT - T T
1000 ¢ UPT.DEL o - E
INV —+—]
INV.DEL + y
INV.FREEZ —=— T
INV.FREEZ.DEL o - T
100 E all local - - -
Memory all remote
Access .
Cost e
10 b ;/ B//E,/“ $. TRIRIRIRI _:
1 L IR | EEE R [R [-]
4 6 8 10 12 14 16
Log of Page Size (in Bytes)
Figure 5: FFT
' UPT
1000 ¢ UPT.DEL o - -
INV —+—]
INV.DEL + .
INV.FREEZ —=— T
INV.FREEZ.DEL o - T
100 E all local - - - -
Memory all remote ——]
Access]
Cost DU —
1 —
10 4 -
3 4 3
1 L IR | EEE R [R [-]
4 6 8 10 12 14 16

Log of Page Size (in Bytes)

Figure 6: SPEECH

11

T UPT - T T T
1000 ¢ UPT.DEL o - 5
INV —+—]
INV.DEL -+ - y
INV.FREEZ —=— T
INV.FREEZ.DEL o - T
100 E all local - - - -
Memory all remote ——]
Access]
Cost)
10 ¥ 3 © =
1 L IR | EEE R [R [-]
4 6 8 10 12 14 16
Log of Page Size (in Bytes)
Figure 7: SIMPLEX
T UPT - T T T
1000 ¢ UPT.DEL o - 3
INV —+—]
INV.DEL -+ - .
INV.FREEZ —=— T
INV.FREEZ.DEL o - T
100 E all local - - - -
Memory all remote]
Access]
Cost 3
¢ .
10 E_ & oo F oo & o _;7
1 L IR | EEE R [R [-]
4 6 8 10 12 14 16

Log of Page Size (in Bytes)

Figure 8: WEATHER

12

The benefits of hardware counters are even more pronounced in SIMPLEX (figure 7) and WEATHER
(figure 8). For those applications, hardware counters, not only bound the worst case behavior of INV,
but make INV and UPT attractive as memory coherence protocols. Indeed, figures 7 and 8 show that
the performance of INV.DEL and UPT.DEL are somewhere between “all local” and “all remote”.
Thus, INV.DEL and UPT.DEL are protocols that can be used for effective locality management in
shared-memory multiprocessors. They replicate pages transparently, resulting in a low memory access
cost (half of the “all remote” protocol).

3.4 The effect of optimal data alignment

Our experiments so far have focused on the performance of a memory coherence protocol on a fixed
stream of virtual addresses. Thus, we have quantified what the operating system alone can do to
manage locality by replicating pages. We have shown that a significant obstacle in managing locality
is false sharing, which results in a large number of page invalidations, and/or a large number of
updates travelling through the interconnection network. Memory coherence policies cannot eliminate
false sharing by themselves. The only way to eliminate false sharing is to change the assignment of
data to pages, so that data referenced by different processors end up in different pages. The assignment
of data to pages can be changed by the user and the compiler.

In this set of experiments, we evaluate the effect of sophisticated data alignment to the performance
of the memory coherence protocols for various page sizes and examine if it 1s worthwhile to dedicate
compile and programmer time to improve data alignment and through it, the performance of the
memory coherence protocol.

To answer these questions, we have implemented a data re-alignment policy, that allocates data
to pages, so as to reduce false sharing. Our policy is off-line and given a trace, it reorganizes the
mapping of data to pages. The data re-alignment policy works as follows:

1. It reads one million memory accesses from the input trace.
2. For the most recently read set of references, it marks all pages referenced.

3. For each page referenced it determines if it may be falsely shared, that is, accessed by more than
one processor, and written by at least one processor.

4. For each page that could be falsely shared, it examines each memory location of the page. If
the location is accessed by one processor (say A) only, the location is reassigned to a page that
has not been used before, and contains reassigned locations accessed by A only. If the location
is accessed by more than one processor, then it is truly shared and we do not reassign it.

5. If there are are more references in the input, go to the first step.

Our algorithm is not the best possible for data re-alignment. It is simple enough however, to
demonstrate if data re-alignment is an effective way to improve the performance of memory coherence
policies. We repeated our trace-driven simulations, after passing the traces through the data re-
alignment module.

Figure 9 shows the memory access cost of the FFT application running on top of several memory
coherence policies, using traces with re-aligned data. The first thing we notice is that the performance
of all policies is remarkably better than that in our previous experiments. For example, the memory
access cost for UPT.DEL and INV.DEL for page sizes of 4K is close to 2.2 when data re-alignment is
used. Figure 5 suggests that the cost for the same policies without data re-alignment is close to 14.

Figure 9 suggests that almost all policies, for most page sizes are in the acceptable range between
“all local” and “all remote”. The policies that perform best, are the UPT.DEL and INV.DEL, which
are the “vanilla” policies augmented with the hardware counter.

Both freezing policies (INV.FREEZ, INV.FREEZ.DEL) perform close to the “all remote” line.
Even though page freezing is generally a good idea, (as figures 1-4 suggest) that it is very weak

13

10000 ¢

1000 E

Memory

Access100 F

Cost

10 E

10000 ¢

1000 E

Memory

Access100 F

Cost

10 E

UPT

UPT.DEL -

INV

INV.DEL -

INV.FREEZ

INV.FREEZ.DEL -

all local

all remote - - -

10

Log of Page Size (in Bytes)

Figure 9: FFT with data re-alignment

14 16

UPT

UPT.DEL -

INV

INV.DEL -

INV.FREEZ

INV.FREEZ.DEL -

all local - - -

all remote

10

Log of Page Size (in Bytes)

14

Figure 10: SPEECH with data re-alignment

14 16

10000 T T T T T

UPT —-—

UPT.DEL o -

INV —+—

INV.DEL -+ -
INV.FREEZ —=—
INV.FREEZ.DEL = -
Memory | all local - - -
Access100 | all remote ——
Cost E

1000 |

105_ H¥ %;;::::X::::::

L ||||||L:

1 e IERRERR R | R [IEERER R [EERE R TR | TR -

4 6 8 10 12 14 16
Log of Page Size (in Bytes)

Figure 11: SIMPLE with data re-alignment

when coupled with data re-alignment. This is because the main advantage of freezing policies, namely
reduction in the effects of false sharing does not exist anymore, since there is almost no false sharing.

SPEECH in figure 10 has a similar behavior to FFT. When the page size is small all policies, with
the exception of the freezing policies, perform well. When the page size gets larger than 4K, UPT,
UPT.DEL and INV.DEL are the ones that perform well.

SIMPLE in figure 11 behaves similarly. UPT.DEL and INV.DEL are the best policies. In this
figure we can easily notice that the behavior of these policies is not very good for small pages sizes
(around 256 bytes), gets better at medium pages sizes (1-4K) and then gets worse again for large page
sizes. The reason that they do not perform very well for small page sizes, is that they suffer from high
operating system overhead. Large page sizes imply fewer page faults to transfer a page, and therefore
less system overhead. WEATHER (figure 12) is no exception; as in the previous cases, INV.DEL and
UPT.DEL perform the best.

Summarizing, our experimentation with data-alignment suggests that data re-alignment results in
significant performance improvement for all memory coherence protocols.

4 Conclusions

In this paper we considered several factors in the design of memory coherence protocols. We studied
the effectiveness of update-based protocols, of invalidate-based protocols, of freezing mechanisms to
avoid page-bouncing, of hardware counters to support delayed replication, and of data re-allocation
to reduce false sharing.

Based on our simulation results we conclude:

e Data re-alignment, is the largest single factor of performance improvement. This result calls
for a cooperation between the operating-system and the compiler to exploit locality together.

15

10000 T T T T T

UPT ——

UPT.DEL o -

INV +—

INV.DEL -+ -
INV.FREEZ —=—
INV.FREEZ.DEL o -

Memory all local - - -
Access 100 all remote ——

Cost

1000

\
|
:

N
-
\

1 e IERRERR R | R [IEERER R [EERE R TR | TR -

4 6 8 10 12 14 16
Log of Page Size (in Bytes)

Figure 12: WEATHER with data re-alignment

The operating system alone, even when assisted by hardware mechanisms is not able to exploit
locality effectively on an application that has a naive data alignment. On the other hand, the
compiler by itself does not know when to replicate data, as this decision depends on the dynamic
execution of the application. However, the compiler may have lots of information about the data
access patterns of the applications, and place data with different reference patterns on different
pages.

Our simulations indicate that the performance improvement that data re-alignment can result in
two orders of magnitude of performance improvement for simple invalidate-based policies, and
up to an order of magnitude of performance improvement for update-based policies (contrast
figures 1 and 9).

Hardware counters that support delayed replication are always useful. Hardware counters are
very effective in reducing page bouncing. When coupled with data alignment, hardware counters
result in the best performance we observed.

Update-based protocols are almost always better than invalidate-based protocols, but the difference
between the two is small for the cases of good data re-alignment. The reason is that for the large
page sizes we simulated, it is always better to send the a new value, rather than to invalidate a
page, and replicate it on the next access. The very few cases where invalidate-based protocols
were better, happened at small page sizes (less than 64 words), which is in agreement with
previous results [9].

Although freezing mechanisms seem to help, they provide no advantage when combined with (or
when compared to) data re-alignment, or hardware counters. In the absence of hardware support,
freezing can be used to reduce excessive replication and updates. Freezing, however, does not
cooperate well with other mechanisms like the hardware counters, and the data re-alignment.

16

The reason is that freezing is too eager to freeze a page, to avoid false sharing. Although this
eagerness 1s good when there is lots of false sharing going on, it is definitely a bad idea when
there is almost no false sharing.

In conclusion, our results indicate that locality management is a global system issue and that all
system levels should cooperate to exploit. The compiler should perform sophisticated data alignment,
the operating system should perform memory caching and coherence, while the hardware should assist
the operating system in avoiding unecessary data movement.

Acknowledgements

Manolis G.H. Katevenis contributed several of the ideas described in the paper, and improved their
presentation via several helpful discussions. Financial support for this work was provided by the
Commission of the European Communities (CEC), through ESPRIT contract P6253 “Supercomputer
Highly Parallel System” (SHIPS). We would like to thank D. Chaiken from MIT for providing us the
multiprocessor traces.

References

[1] J. Archibald and J.-L. Baer. “Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model”. ACM Transactions on Computer Systems, 4(4):273-298, November 1986.

[2] BBN Laboratories. “Butterfly Parallel Processor Overview”. Technical Report 6148, BBN Lab-
oratories, Cambridge, MA, March 1986.

[3] W. J. Bolosky and M. L. Scott. “A Trace-Based Comparison of Shared Memory Multiprocessor
Architectures”. Technical Report 432, University of Rochester, Computer Science Department,
July 1992.

[4] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox. “NUMA Policies and
Their Relation to Memory Architecture”. In Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 212-221, April
1991.

5] W.J. Bolosky, R.P. Fitzgerald, and M.L. Scott. “Simple But Effective Techniques for NUMA
g
Memory Management”. In Proceedings of the 12th Symposium on Operating Systems Principles,
pages 19-31, December 1989.

[6] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. “Directory-Based Cache Coherence in
Large-Scale Multiprocessors”. IEEE Computer, 23(6):49-58, June 1990.

[7] A.L. Cox and R.J. Fowler. “The Implementation of a Coherent Memory Abstraction on a NUMA
Multiprocessor: Experiences with PLATINUM”. In Proceedings of the 12th Symposium on Op-
erating Systems Principles, pages 32-44, December 1989.

[8] T. H. Dunigan. “Kendall Square Multiprocessor: Early Experiences and Performance”. Technical
Report ORNL/TM-12065, Oak Ridge National Laboratory, May 1992.

[9] S. J. Eggers and R. H. Katz. “Evaluation of the Performance of Four Snooping Cache Coherency
Pro tocols”. In Proceedings of the 16th International Conference on Computer Architecture, page
2 15, 1989.

[10] A. Forin, J. Barrera, and R. Sanzi. “The Shared Memory Server”. In Proceedings of the USENIX
Winter ’89 Technical Conference, pages 229-244, January 1989.

17

[11]

[12]

[13]

[14]

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 1990.

M. A. Holliday. “Reference History, Page Size, and Migration Daemons in Local/Remote Ar-
chitectures”. In Proceedings of the 3rd International Conference on Architectural Support for
Programmaing Languages and Operating Systems, Boston, MA, April 1989.

M. A. Holliday. “On the Effectiveness of Dynamic Page Placement”. Technical report, DCS,
Duke University, Durham, NC, September 1989.

R.P. LaRowe and C.S. Ellis. “Virtual Page Placement Policies for NUMA Multiprocessors”.
Technical Report CS-1990-10, Department of Computer Science, Duke University, Dec 1988.

R. P. LaRowe, Jr. and C. S. Ellis. “Experimental Comparison of Memory Management Policies
for NUMA Multiprocessors”. ACM Transactions on Computer Systems, 9(4):319-363, November
1991.

Kai Li and Paul Hudak. “Memory Coherence in Shared Virtual Memory Systems”. ACM Trans-
actions on Computer Systems, 7(4):321-359, November 1989.

E.P. Markatos and T.J. LeBlanc. “Shared-Memory Multiprocessor Trends and the Implications
for Parallel Program Performance”. Technical Report 420, University of Rochester, Computer
Science Department, March 1992.

Sequent Computer Systems Inc. Balance 8000 System, 1985.
Sequent Computer Systems Inc. Symmetry Multiprocessor Architecture Querview, 1991.

J.E. Veenstra. Hybrid Cache Coherency Protocols. PhD thesis, University of Rochester, Computer
Science Department. in preparation.

J.E. Veenstra and R.J. Fowler. “A Performance Evaluation of Optimal Hybrid Cache Coherency
Protocols”. In Proceedings of the fifth ACM Symposium on Architectural Support for Operating
Systems and Programming Languages, pages 149-160, 1992.

18

policy | page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 6 4.832 0.000 5.092 34.955 16.533 0.529 0.000 3.568 12.945
UPT 8 4.842 0.000 10.854 113.002 15.685 2.008 0.000 13.324 36.537
UPT 10 4.959 0.000 8.785 137.454 3.943 2.019 0.000 15.802 32.135
UPT 12 4.989 0.000 8.445 163.629 1.009 2.066 0.000 17.438 35.459
UPT 14 4.996 0.000 9.064 256.414 0.275 2.254 0.000 23.307 47.392
UPT 16 4.999 0.000 12.036 256.414 0.092 3.005 0.000 31.036 62.970
INV 6 2.555 2.277 40.133 0.000 130.646 4.181 0.228 0.000 0
INV 8 2.459 2.400 92.416 0.000 134.056 17.159 0.240 0.000 0
INV 10 0.978 4.203 429.364 0.000 192.066 98.338 0.420 0.000 0
INV 12 0.707 4.716 1622.379 0.000 193.468 396.222 0.472 0.000 0
INV 14 0.142 4.880 7937.827 0.000 241.850 1981.238 0.488 0.000 0
INV 16 0.062 4.917 32499.516 0.000 247.927 8124.070 0.492 0.000 0
Table 2: FFT

A Analytical Figures

In this appendix we provide detailed measurements of our simulations of the INV and UPT policies
and their performance when helped by hardware counters and data re-alignment. Each table has 4
major columns:

e policy: this is the protocol simulated.

e page: this is the log (base two) of the page size in bytes. The page sizes simulated are 256 bytes

to 64Kbytes.

e latency overhead: This is the average overhead (in cycles) for each memory operation. This

overhead is further divided into:

e network traffic: This is the number of network packets (address - datum) generated by each

local: cost of local accesses

remote: cost of remote accesses

repl.: cost of replication

multicasts: cost of sending update packets

os ovhead: operating system overhead (excluding data transfers)

protocol. This traffic is further divided into:

e mls: This is the replication factor of each page that is replicated to more than one processor.
We count it only for update-based policies, in order to get a feeling of how many update packets

— repl.: traffic due to page replication

— remote: traffic due to remote memory accesses

— multicasts: cost of sending update packets

each store operation needs to generate.

Al

Plain protocols

Tables 2-5 show the various statistics for the experiments described in figures 1-4.

19

policy | page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 6 3.997 0.000 18.179 7.462 59.539 1.905 0.034 0.746 13.517
UPT 8 4.204 0.000 24.963 19.629 36.214 4.635 0.029 2.272 38.250
UPT 10 4.415 0.000 28.254 35.482 12.687 6.496 0.023 3.567 57.144
UPT 12 4.502 0.000 27.139 39.147 3.242 6.640 0.021 3.799 59.181
UPT 14 4.525 0.000 27.934 41.037 0.848 6.945 0.019 3.918 60.271
UPT 16 4.541 0.000 30.499 43.945 0.232 7.614 0.017 4.102 61.919
INV 6 3.750 0.593 23.747 0.000 77.855 2.491 0.059 0.000 0
INV 8 3.838 0.612 45.861 0.000 65.899 8.435 0.061 0.000 0
INV 10 3.987 0.634 103.190 0.000 46.214 23.661 0.063 0.000 0
INV 12 3.994 0.772 322.551 0.000 38.452 78.750 0.077 0.000 0
INV 14 4.002 0.801 1180.912 0.000 35.964 294.615 0.080 0.000 0
INV 16 3.991 0.807 4858.252 0.000 37.061 1214.409 0.081 0.000 0
Table 3: SIMPLE
policy | page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 8 4.257 0.000 1.829 22.820 2.644 0.338 0.002 10.518 62.170
UPT 10 4.269 0.000 2.664 22.820 1.196 0.612 0.002 10.699 62.048
UPT 12 4.276 0.000 3.097 22.820 0.370 0.758 0.001 10.771 62.113
UPT 14 4.280 0.000 4.100 22.820 0.124 1.020 0.001 10.864 62.270
UPT 16 4.283 0.000 7.208 22.820 0.055 1.800 0.000 10.990 60.817
INV 8 3.926 0.019 30.709 0.000 43.973 5.629 0.002 0.000 0
INV 10 3.545 0.019 204.319 0.000 91.626 46.913 0.002 0.000 0
INV 12 2.723 0.343 1464.099 0.000 178.174 364.901 0.034 0.000 0
INV 14 2.006 0.765 8082.520 0.000 246.624 2020.343 0.076 0.000 0
INV 16 1.826 0.878 34546.178 0.000 263.564 8636.472 0.088 0.000 0
Table 4: SPEECH
policy | page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 8 4.020 0.000 41.780 10.394 60.175 7.702 0.042 1.090 17.404
UPT 10 4.315 0.000 65.820 30.239 29.464 15.086 0.029 3.366 47.803
UPT 12 4.519 0.000 64.226 46.042 7.666 15.701 0.022 4.361 57.613
UPT 14 4.589 0.000 65.168 53.513 1.978 16.200 0.016 4.988 61.628
UPT 16 4.608 0.000 67.823 53.513 0.517 16.932 0.014 5.168 62.661
INV 8 3.806 0.799 47.238 0.000 67.927 8.695 0.080 0.000 0
INV 10 3.907 0.857 116.958 0.000 52.424 26.841 0.086 0.000 0
INV 12 3.982 0.926 331.997 0.000 39.596 81.093 0.093 0.000 0
INV 14 4.002 0.940 1195.950 0.000 36.415 298.316 0.094 0.000 0
INV 16 4.007 0.943 4666.988 0.000 35.601 1166.578 0.094 0.000 0

Table 5: WEATHER

20

policy page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead | repl. | remote | multicasts
UPT.DEL 6 4.502 3.307 5.092 32.855 33.065 0.529 0.066 3.272 11.890
UPT.DEL 8 2.666 | 21.957 9.547 31.814 27.593 1.766 0.439 2.962 8.628
UPT.DEL 10 2.562 | 24.203 5.924 17.423 5.318 1.361 0.482 1.502 3.112
UPT.DEL 12 2.558 | 24.745 1.435 42.162 0.343 0.351 0.488 4.228 9.131
UPT.DEL 14 2.532 | 24.944 4.642 103.849 0.282 1.154 0.493 11.936 29.926
UPT.DEL 16 2.495 | 25.131 8.024 134.353 0.122 2.003 0.501 15.359 62.814
INV.DEL 6 2.443 | 16.053 | 20.355 0.000 132.177 2.115 0.379 0.000 0
INV.DEL 8 2.036 | 29.771 11.928 0.000 34.473 2.206 0.558 0.000 0
INV.DEL 10 0.087 | 52.736 | 14.291 0.000 12.829 3.284 0.970 0.000 0
INV.DEL 12 0.033 | 54.498 8.813 0.000 2.105 2.156 0.991 0.000 0
INV.DEL 14 0.007 | 55.049 9.096 0.000 0.552 2.261 0.998 0.000 0
INV.DEL 16 0.019 | 54.788 | 10.719 0.000 0.163 2.676 0.996 0.000 0
Table 6: FFT with hardware counters
policy page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead | repl. | remote | multicasts
UPT.DEL 6 3.577 | 11.908 | 14.499 6.952 94.866 1.518 0.163 0.672 13.296
UPT.DEL 8 2.915 | 32.113 8.503 6.338 24.617 1.575 0.392 0.577 29.815
UPT.DEL 10 2.700 | 37.278 5.269 1.641 4.730 1.211 0.455 0.092 8.562
UPT.DEL 12 2.629 | 38.716 5.293 1.842 1.264 1.295 0.473 0.110 14.091
UPT.DEL 14 2.502 | 41.202 5.257 2.513 0.319 1.307 0.499 0.176 23.534
UPT.DEL 16 2.369 | 43.462 6.825 2.990 0.104 1.704 0.526 0.221 39.241
INV.DEL 6 3.351 14.544 | 16.162 0.000 105.809 1.693 0.209 0.000 0
INV.DEL 8 2.570 | 38.230 | 10.736 0.000 31.106 1.991 0.455 0.000 0
INV.DEL 10 2.596 | 40.091 5.915 0.000 5.310 1.359 0.475 0.000 0
INV.DEL 12 2.344 | 44.654 6.802 0.000 1.625 1.664 0.530 0.000 0
INV.DEL 14 2.100 | 49.440 7.237 0.000 0.439 1.799 0.580 0.000 0
INV.DEL 16 1.582 | 59.056 | 10.763 0.000 0.164 2.687 0.683 0.000 0
Table 7: SIMPLE with hardware counters
policy page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead | repl. | remote | multicasts
UPT.DEL 8 4.161 2.616 0.730 22.820 2.111 0.135 0.029 10.199 61.573
UPT.DEL 10 4.098 4.321 0.806 22.820 0.724 0.185 0.046 9.694 59.032
UPT.DEL 12 4.051 5.496 1.079 22.820 0.258 0.264 0.058 9.688 56.284
UPT.DEL 14 3.952 7.715 1.567 22.820 0.095 0.390 0.083 9.691 56.654
UPT.DEL 16 3.729 | 12.342 2.349 22.820 0.036 0.586 0.139 9.865 57.725
INV.DEL 8 3.778 | 10.810 4.743 0.000 13.740 0.879 0.113 0.000 0
INV.DEL 10 3.158 | 26.036 8.621 0.000 7.748 1.984 0.274 0.000 0
INV.DEL 12 1.413 | 56.448 | 16.903 0.000 4.037 4.134 0.713 0.000 0
INV.DEL 14 1.241 | 60.119 | 17.023 0.000 1.033 4.232 0.751 0.000 0
INV.DEL 16 0.952 | 66.170 | 17.937 0.000 0.273 4.478 0.809 0.000 0

Table 8: SPEECH with hardware counters

21

policy page latency overhead network traffic mls
local | remote | repl. | multicasts | os ovhead | repl. | remote | multicasts
UPT.DEL 8 2.864 | 30.939 | 5.901 2.245 17.055 1.092 0.410 0.131 14.589
UPT.DEL 10 2.646 | 36.401 | 0.663 1.030 0.595 0.152 0.470 0.006 57.063
UPT.DEL 12 2.631 | 36.738 | 0.809 1.022 0.193 0.198 0.474 0.006 60.604
UPT.DEL 14 2.593 | 37.476 | 0.801 1.017 0.049 0.199 0.481 0.005 63.000
UPT.DEL 16 2.449 | 40.234 | 1.099 0.983 0.017 0.274 0.510 0.002 25.215
INV.DEL 8 2.824 | 32.613 | 5.982 0.000 17.288 1.106 0.418 0.000 0
INV.DEL 10 2.632 | 37.930 | 0.745 0.000 0.669 0.171 0.473 0.000 0
INV.DEL 12 2.603 | 38.542 | 0.950 0.000 0.227 0.232 0.479 0.000 0
INV.DEL 14 2.533 | 39.929 | 1.077 0.000 0.065 0.268 0.493 0.000 0
INV.DEL 16 2.440 | 41.733 | 1.099 0.000 0.017 0.274 0.512 0.000 0

A.2 Protocols with delayed replication

Table 9: WEATHER with hardware counters

Tables 6-9 show the various statistics for the experiments described in figures 5-8.

A.3 Protocols data re-alignment

Tables 10-13 show the various statistics for the experiments described in figures 9-12.

22

policy page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 8 4.950 0.000 3.162 0.924 4.569 0.585 0.001 0.092 13.798
UPT 10 4.972 0.000 5.683 1.814 2.551 1.306 0.001 0.181 28.472
UPT 12 4.981 0.000 14.191 2.385 1.695 3.471 0.000 0.238 37.477
UPT 14 4.983 0.000 52.824 101.019 1.603 13.134 0.000 11.826 62.110
UPT 16 4.983 0.000 209.505 101.019 1.596 52.303 0.000 11.826 62.110
INV 8 4.915 0.059 3.849 0.000 5.562 0.712 0.006 0.000 0.000
INV 10 4.922 0.064 10.129 0.000 4.546 2.328 0.006 0.000 0.000
INV 12 4.925 0.067 35.098 0.000 4.192 8.586 0.007 0.000 0.000
INV 14 4.924 0.067 140.124 0.000 4.253 34.841 0.007 0.000 0.000
INV 16 4.924 0.067 557.302 0.000 4.246 139.131 0.007 0.000 0.000
UPT.DEL 8 4.709 2.784 1.077 0.355 3.113 0.199 0.055 0.008 1.262
UPT.DEL 10 4.619 3.933 1.180 0.576 1.059 0.271 0.075 0.022 3.474
UPT.DEL 12 4.559 4.864 1.340 0.606 0.320 0.328 0.088 0.021 3.410
UPT.DEL 14 4.525 5.409 1.039 0.469 0.063 0.258 0.095 0.006 1.000
UPT.DEL 16 3.613 | 14.524 4.012 1.381 0.061 1.002 0.277 0.006 1.000
INV.DEL 8 4.698 3.249 1.170 0.000 3.381 0.216 0.057 0.000 0.000
INV.DEL 10 4.608 4.487 1.213 0.000 1.089 0.279 0.077 0.000 0.000
INV.DEL 12 4.553 5.361 1.340 0.000 0.320 0.328 0.089 0.000 0.000
INV.DEL 14 4.281 8.502 1.825 0.000 0.111 0.454 0.144 0.000 0.000
INV.DEL 16 2.635 | 26.599 7.146 0.000 0.109 1.784 0.473 0.000 0.000
Table 10: FFT with data re-alignment
policy page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 8 4.271 0.000 18.635 5.917 27.034 3.460 0.031 0.561 18.240
UPT 10 4.411 0.000 30.228 11.108 13.568 6.947 0.023 1.213 34.238
UPT 12 4.528 0.000 36.190 13.351 4.322 8.851 0.012 1.504 32.982
UPT 14 4.575 0.000 51.578 18.301 1.565 12.822 0.006 2.130 30.757
UPT 16 4.593 0.000 72.791 31.367 0.555 18.172 0.003 3.330 42.258
INV 8 4.121 0.392 28.711 0.000 41.537 5.317 0.039 0.000 0.000
INV 10 4.217 0.351 70.486 0.000 31.541 16.149 0.035 0.000 0.000
INV 12 4.256 0.333 230.839 0.000 27.596 56.516 0.033 0.000 0.000
INV 14 4.214 0.294 1143.586 0.000 34.825 285.284 0.029 0.000 0.000
INV 16 4.186 0.269 5193.959 0.000 39.622 1298.336 0.027 0.000 0.000
UPT.DEL 8 3.390 | 23.501 6.419 2.269 18.557 1.188 0.286 0.180 10.690
UPT.DEL 10 3.144 | 30.569 4.536 1.519 4.072 1.042 0.362 0.103 6.271
UPT.DEL 12 3.047 | 33.021 5.121 1.622 1.223 1.253 0.389 0.112 6.770
UPT.DEL 14 2.806 | 38.699 6.236 1.679 0.379 1.551 0.438 0.127 4.400
UPT.DEL 16 2.572 | 42.332 4.570 1.230 0.070 1.141 0.485 0.073 7.851
INV.DEL 8 3.221 | 27.378 7.853 0.000 22.725 1.454 0.325 0.000 0.000
INV.DEL 10 3.071 | 32.783 5.089 0.000 4.569 1.170 0.380 0.000 0.000
INV.DEL 12 2.856 | 37.081 6.153 0.000 1.470 1.505 0.427 0.000 0.000
INV.DEL 14 2.287 | 48.033 8.375 0.000 0.508 2.082 0.542 0.000 0.000
INV.DEL 16 2.124 | 51.380 6.563 0.000 0.100 1.638 0.575 0.000 0.000

Table 11: SIMPLE with data re-alignment

23

policy page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 8 4.257 0.000 1.845 1.157 2.666 0.341 0.002 0.114 22.628
UPT 10 4.269 0.000 2.707 1.242 1.215 0.622 0.002 0.123 22.354
UPT 12 4.277 0.000 3.252 2.486 0.389 0.796 0.001 0.247 25.406
UPT 14 4.281 0.000 4.549 4.172 0.138 1.131 0.001 0.449 36.101
UPT 16 4.283 0.000 10.081 6.423 0.077 2.517 0.000 0.731 13.021
INV 8 4.250 0.019 2.409 0.000 3.482 0.446 0.002 0.000 0.000
INV 10 4.253 0.018 7.096 0.000 3.188 1.632 0.002 0.000 0.000
INV 12 4.236 0.017 45.017 0.000 5.372 11.002 0.002 0.000 0.000
INV 14 4.216 0.016 258.415 0.000 7.851 64.317 0.002 0.000 0.000
INV 16 4.189 0.017 1468.570 0.000 11.202 367.071 0.002 0.000 0.000
UPT.DEL 8 4.160 2.638 0.738 0.820 2.134 0.137 0.029 0.079 30.495
UPT.DEL 10 4.096 4.361 0.811 0.328 0.728 0.186 0.047 0.030 11.452
UPT.DEL 12 4.049 5.554 1.071 0.426 0.256 0.262 0.059 0.039 17.095
UPT.DEL 14 3.955 7.622 1.367 0.350 0.083 0.340 0.083 0.029 9.328
UPT.DEL 16 3.735 | 12.056 2.477 0.343 0.038 0.618 0.138 0.020 18.310
INV.DEL 8 4.147 2.918 0.851 0.000 2.458 0.157 0.032 0.000 0.000
INV.DEL 10 4.060 5.201 1.064 0.000 0.955 0.245 0.055 0.000 0.000
INV.DEL 12 3.979 7.165 1.443 0.000 0.345 0.353 0.076 0.000 0.000
INV.DEL 14 3.846 | 10.109 2.053 0.000 0.125 0.510 0.110 0.000 0.000
INV.DEL 16 3.450 | 18.791 4.519 0.000 0.069 1.128 0.209 0.000 0.000
Table 12: SPEECH with data re-alignment
policy page latency overhead network traffic mls
local | remote repl. multicasts | os ovhead repl. remote | multicasts
UPT 8 4.412 0.000 19.272 0.167 27.956 3.578 0.008 0.008 62.907
UPT 10 4.570 0.000 27.022 0.089 12.144 6.218 0.001 0.008 63.000
UPT 12 4.643 0.000 26.519 0.085 3.169 6.489 0.000 0.008 63.000
UPT 14 4.662 0.000 27.190 0.084 0.825 6.761 0.000 0.008 63.000
UPT 16 4.667 0.000 30.142 0.084 0.230 7.525 0.000 0.008 63.000
INV 8 4.407 0.084 19.630 0.000 28.476 3.645 0.008 0.000 0.000
INV 10 4.563 0.007 28.665 0.000 12.877 6.593 0.001 0.000 0.000
INV 12 4.637 0.002 32.666 0.000 3.902 7.991 0.000 0.000 0.000
INV 14 4.656 0.002 51.360 0.000 1.559 12.768 0.000 0.000 0.000
INV 16 4.661 0.001 126.390 0.000 0.963 31.554 0.000 0.000 0.000
UPT.DEL 8 3.860 | 17.249 1.925 0.289 5.562 0.356 0.197 0.006 56.562
UPT.DEL 10 3.823 | 18.963 1.387 0.241 1.245 0.319 0.210 0.006 56.400
UPT.DEL 12 3.811 19.404 1.510 0.227 0.361 0.369 0.214 0.005 63.000
UPT.DEL 14 3.786 | 20.205 1.511 0.208 0.092 0.376 0.221 0.005 63.000
UPT.DEL 16 3.615 | 23.359 1.936 0.275 0.030 0.483 0.264 0.002 25.215
INV.DEL 8 3.853 | 17.637 1.988 0.000 5.746 0.368 0.198 0.000 0.000
INV.DEL 10 3.812 | 19.426 1.469 0.000 1.319 0.338 0.213 0.000 0.000
INV.DEL 12 3.789 | 20.117 1.651 0.000 0.394 0.404 0.220 0.000 0.000
INV.DEL 14 3.738 | 21.525 1.787 0.000 0.108 0.444 0.233 0.000 0.000
INV.DEL 16 3.607 | 23.777 1.936 0.000 0.030 0.483 0.265 0.000 0.000

Table 13: WEATHER with data re-alignment

24

