How Architecure Evolution influences the Scheduling Discipline used in Shared-Memory
Multiprocessors

Evangelos P. Markatos®*

@ Institute of Computer Sci., FORTH P.O.Box 1385, Heraklio, Crete GR-711-10 GREECE
markatos@csi.forth.gr

To appear in Parallel Computing 93.

1. Introduction

Parallel applications execute efficiently, only when they distribute their workload among the available
processors, so that no processors are idle while there is work to do, and the interactions among the
processors in the form of communication, or synchronization overhead is minimized. Communication
is every form of information exchange, including message passing, cache misses and non-local memory
accesses. These three overhead dimensions (namely load imbalance, communication and synchronization)
are usually in conflict with each other. For example, a policy that balances the load distributes the work
(evenly) among processors, thus increasing communication and synchronization overhead. Therefore,
the efficient execution of parallel applications relies on the delicate balance among the three overhead
dimensions. In this paper we argue that the importance of each dimension, changes with architecture
evolution and we study the performance implications of this change.

Load imbalance is the result of an uneven distribution of the work among all available processors, and
is inherent to the application and the scheduler used. Architectural changes usually do not change the
imbalance as long as the scheduler and the number of processors remain the same. Communication and
synchronization overhead, on the other hand, change with the architecture. Actually, this overhead tends
to increase as recent architecture trends suggest, since processors are getting faster at a much higher rate
than memories and interconnection networks do.

In this paper we investigate the performance implication of this evolving tradeoff for three different
scheduling families: static, dynamic and affinity schedulers.

e Static Schedulers assign the work to processors at compile time and never reassign (migrate) work
to idle processors. Hence, they have very little synchronization/communication overhead, but may
lead to underutilization of the multiprocessor.

e Dynamic Schedulers make all scheduling decisions at run-time [2]. They use a central work-queue,
where all idle processors go to find work to execute. While these schedulers result in minimal
load imbalance, they may also result in an increase of communication overhead, because processors
execute processes independently of where the working set of these processes may reside. This
scheduling discipline may result in large numbers of cache misses or non-local memory accesses.

o Affinity Schedulers [1] attempt to strike a balance among the static and dynamic schedulers. To
do so, affinity schedulers create one local workqueue per processor. Each processor is statically
assigned some work, as if static scheduling were used. If load imbalance actually occurs, idle
processors search the workqueues of other processors to find work to do. Thus, affinity schedulers
assign the work to processors in exactly the same way as static schedulers, but reassign the work
to idle processors if load imbalance happens.

2. Results

We use simulation and experimental evaluation to measure the performance of the scheduling families.
We have chosen transitive closure as a representative application that combines all overhead dimensions
and allows us to explore them. The pseudo-code for transitive closure is:

*Part of this work was perfomed when the author was wih the University of Rochester. Part of this work was supported
under NSF CISE Institutional Infrastructure Program Grant No. CDA-8822724, NSF Research Grant No. CCR-9005633,
and ONR Contract No. N00014-92-J-1801 (in conjunction with the DARPA HPCC program, ARPA Order No. 8930).

for k =1 to N
forall i =1 to N
if (MATRIX(i,k))
for j = 0,N,1
if (MATRIX(k,j)) THEN
MATRIX(i,j) = TRUE

O WN -

The three overhead dimensions manifest themselves as follows:

o Synchronization QOverhead: The granularity of the forall loop in line 2: determines the synchro-
nization overhead needed to parallelize the application.

o Load Imbalance: Each iteration of the forall loop may be long or short depending on the value of
MATRIX(i,k). In fact, the input MATRIX we use represents a graph which has no edges apart from
a clique of size p- N, where 0 < p < 1. Varying p, varies the imbalance inherent to the application.
Hence, a nalve assignment of iterations to processors may result in an uneven distribution of the
work.

o Commaunication Overhead: The 4 iteration of the forall loop accesses the 7;; row of the matrix.
If each time the forall loop executes, the i, iteration is assigned on a different processor than the
one it was assigned the previous time, the ¢;; row will have to be migrated from one local memory
(cache) to another.

2.1. Experimental Evaluation
The multiprocessing environment

In our experiments we use two multiprocessors that are representative of their generations and span
a time range of over 7 years: (1) The Sequent Symmetry (released in 1985) is bus-based cache-coherent
multiprocessor with slow processors a rather fast bus, and (2) the KSR-1 (released in 1991) is a large
scale cache-coherent multiprocessor with very fast processors and a large interconnection network. Com-
munication (compared to computation) is much more expensive on the KSR-1, than on the Symmetry.

The Performance of Schedulers on KSR and Sequent

In our experiments we run the application under the three different schedulers and we varied the
inherent imbalance by varying p. Fig. 1 shows the completion time of the application on the KSR-1 and
Symmetry multiprocessors. The Symmetry results suggest that the dynamic and affinity schedulers are
better (almost) everywhere in the range of imbalance. Load balancing seems too important to be ignored
on the Symmetry, while communication and synchronization overhead do not manifest themselves.

However, the picture on the KSR is much different. Fig. 1 suggests that when p is more than 80% |,
static scheduling is the best. This means that even if 20% of the processors are idle, it is better leaving
them idle, rather than migrate some work to them. By comparing dynamic and static scheduling only,
we see that as much as 50% of the processors should be idle before it is worth migrating some work to
balance the load!

Hence, we see that although dynamic scheduling was a reasonable choice for the 1985 Symmetry, it is
not a reasonable choice for the 1991 KSR. Static and affinity scheduling are more appropriate. The reason
lies in the change of the cost of communication from one multiprocessor to another. As communication
is getting more expensive, while load imbalance does not change, communication and synchronization
overhead start to manifest itself, making static and affinity schedulers attractive choices.

2.2. Simulation Results

We use simulation to quantify the performance difference among the three scheduler families. Although
simulation is only an approximation of the real execution of programs, it is very helpful in answering
questions that can not be answered using experimental evaluation. The questions we plan to answer
using simulation are:

e What is the performance difference among the scheduler families as we vary the migration cost?

e How much load imbalance in the application is necessary for the dynamic schedulers to outperform
the static scheduler? How does this imbalance vary with the number of processors?

Sequent KSR-1

1000 T T T T T T 2 30— T T T T T “static” o
F i 95 “dynamic” +
E E 20 “affinity” o
Time
secs 100 E E 15
E i 10
o — 1))
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Percentage of nodes in clique Percentage of Nodes in the Clique

Figure 1. Completion time of TC on Sequent and KSR-1

The simulator

We developed a simulator that simulates the scheduling of N iterations on P processors. Each iteration
has affinity for one processor. If the iteration is not executed on the processor it has affinity on, it
encounters a multiplicative migration overhead m. The static scheduler assigns each iteration to be
executed on the processor it has affinity on. The dynamic scheduler assigns iterations to processors using
a self-scheduling [2] method. Each processor takes the next available iteration from the central queue
where all iterations reside. The dynamic affinity scheduler assigns each iteration to be executed on the
processor it has affinity on. If a processor is idle, it searches the queues of the other processors. If it
finds some processor that still has iterations to execute, it takes one iteration, executes it and repeats
this cycle until all processors run out of iterations to execute.

2.2.1. Simulation Experiments
Varying the Migration Penalty

In our first set of experiments we vary the migration penalty, that is the penalty an iteration incurs if it
is executed on a processor that has no affinity to. For this set of experiments we simulated a 32-processor
multiprocessor, that executes 10000 iterations.

Our first experiment assumes an application with ¢ = 50, that is, all the load is initially distributed
to 50% of the processors, while the rest 50% of the processors took only empty iterations to execute,
effectively, they have nothing to do. The completion time of the application under the three schedulers
appears in figure 2. The completion time is plotted as a function of the migration penalty. We see that
dynamic scheduling is reasonable only when the migration penalty is very small. In this range, static
scheduling is the worst of all. When the migration penalty becomes higher than 2, then static scheduling
becomes better than dynamic. Affinity scheduling is almost always the best, and is significantly better
than the other schedulers only in the range where the migration penalty is close to 2. Everywhere else,
affinity scheduling is close to the better of dynamic and static scheduling.

When the imbalance is 90% (figure 2) affinity scheduling seems then only reasonable thing to do. Static
is out of the question, and dynamic is somewhere in between.

Varying the Imbalance

In this set of experiments we vary the imbalance the application may have. The imbalance of the
application, is represented by the imbalance factor, which is the percentage of idle processors after the
assignment of iterations to processors. An imbalance factor of 10 means that 10% of the processors are
idle after the initial assignment of work to processors. We perform two experiments: when the migration
penalty is 2, and when the migration penalty is 4.

Figure 3 plots the completion time of the application when the migration penalty is 2. We see that
when the imbalance is high, dynamic and affinity scheduling are the best, while when the imbalance is
low static and affinity scheduling are the reasonable choices. The crossover between static and dynamic
scheduling is when the imbalance factor is 50. The next figure plots the performance of the schedulers
when the migration penalty is 4. The results are qualitatively the same, only the crossover value has
moved to the point where the imbalance factor is about 75. In general affinity scheduling is significantly
better than the other policies, only close to the crossover point, while it is close to the best of the policies
everywhere else.

load imbalance=50% load imbalance=90%

[M)
N I R Y R B B B g T T T T T T T 1 statlc” o
“dynamic” +
) “affinity”
Time
S 8)
rJ;a\éf';’Er‘!’;grmTm|||||| I TR N TR SO N B
123 45678 91011 123 456 78 91011
migration penalty migration penalty
Figure 2. Completion time of the application imbalance factors 50 and 90.
migration penatly = 2 migration penatly = 4
— “static”
“dynamic”
“affinity”

Time

0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
Imbalance factor Imbalance factor

Figure 3. Completion time of the application: migration penalty 2 and 4.

3. Conclusions

In this paper we compared three scheduler families: dynamic, static and affinity schedulers. We used
experimental evaluation on the Sequent and KSR shared memory multiprocessors, as well as simulations.
Our observations suggest that

o Dynamic schedulers are appropriate for previous generations of multiprocessors, but are not appro-
priate for recent ones.

o Static schedulers are better than dynamic ones, when the overhead related to data migration is
higher than the overhead related to load imbalance.

o Affinity schedulers are significantly better than the others only for the range of parameters where
the imbalance is comparable to the migration cost, and close to the best of the other two schedulers
everywhere else.

Based on our observations we conclude that the performance advantages of static schedulers (low
communication and synchronization overheads) become more apparent with architectural trends, while
the advantages of dynamic schedulers (load balancing) do not improve with time. In the presence of little
imbalance, static schedulers are the appropriate choice, while in the presence of significant imbalance
affinity schedulers should be employed.

REFERENCES

1. E.P. Markatos and T.J. LeBlanc. Using processor affinity in loop scheduling on shared-memory
multiprocessors. In Supercomputing ’92, pages 104-113, November 1992.

2. C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme for
parallel supercomputers. [EEE Transactions on Computers, C-36(12), December 1987.

