
�

How Architecure Evolution in�uences the Scheduling Discipline used in Shared�Memory
Multiprocessors

Evangelos P� Markatosa�

a Institute of Computer Sci�� FORTH P�O�Box ����� Heraklio� Crete GR������� GREECE
markatos	csi�forth�gr

To appear in Parallel Computing ���

�� Introduction

Parallel applications execute e
ciently� only when they distribute their workload among the available
processors� so that no processors are idle while there is work to do� and the interactions among the
processors in the form of communication� or synchronization overhead is minimized� Communication
is every form of information exchange� including message passing� cache misses and non�local memory
accesses� These three overhead dimensions �namely load imbalance� communication and synchronization�
are usually in con
ict with each other� For example� a policy that balances the load distributes the work
�evenly� among processors� thus increasing communication and synchronization overhead� Therefore�
the e
cient execution of parallel applications relies on the delicate balance among the three overhead
dimensions� In this paper we argue that the importance of each dimension� changes with architecture
evolution and we study the performance implications of this change�
Load imbalance is the result of an uneven distribution of the work among all available processors� and

is inherent to the application and the scheduler used� Architectural changes usually do not change the
imbalance as long as the scheduler and the number of processors remain the same� Communication and
synchronization overhead� on the other hand� change with the architecture� Actually� this overhead tends
to increase as recent architecture trends suggest� since processors are getting faster at a much higher rate
than memories and interconnection networks do�
In this paper we investigate the performance implication of this evolving tradeo� for three di�erent

scheduling families� static� dynamic and a
nity schedulers�

� Static Schedulers assign the work to processors at compile time and never reassign �migrate� work
to idle processors� Hence� they have very little synchronization�communication overhead� but may
lead to underutilization of the multiprocessor�

� Dynamic Schedulers make all scheduling decisions at run�time ���� They use a central work�queue�
where all idle processors go to �nd work to execute� While these schedulers result in minimal
load imbalance� they may also result in an increase of communication overhead� because processors
execute processes independently of where the working set of these processes may reside� This
scheduling discipline may result in large numbers of cache misses or non�local memory accesses�

� A�nity Schedulers ��� attempt to strike a balance among the static and dynamic schedulers� To
do so� a
nity schedulers create one local workqueue per processor� Each processor is statically
assigned some work� as if static scheduling were used� If load imbalance actually occurs� idle
processors search the workqueues of other processors to �nd work to do� Thus� a
nity schedulers
assign the work to processors in exactly the same way as static schedulers� but reassign the work
to idle processors if load imbalance happens�

�� Results

We use simulation and experimental evaluation to measure the performance of the scheduling families�
We have chosen transitive closure as a representative application that combines all overhead dimensions
and allows us to explore them� The pseudo�code for transitive closure is�

�Part of this work was perfomed when the author was wih the University of Rochester� Part of this work was supported
under NSF CISE Institutional Infrastructure Program Grant No� CDA��������� NSF Research Grant No� CCR����	
���
and ONR Contract No� N���������J����� 
in conjunction with the DARPA HPCC program� ARPA Order No� ������



�� for k � � to N

�� forall i � � to N

�� if �MATRIX�i�k� �

�� for j � 	�N��


� if �MATRIX�k�j�� THEN

�� MATRIX�i�j� � TRUE

The three overhead dimensions manifest themselves as follows�

� Synchronization Overhead� The granularity of the forall loop in line �� determines the synchro�
nization overhead needed to parallelize the application�

� Load Imbalance� Each iteration of the forall loop may be long or short depending on the value of
MATRIX�i�k�� In fact� the input MATRIX we use represents a graph which has no edges apart from
a clique of size p �N � where � � p � �� Varying p� varies the imbalance inherent to the application�
Hence� a naive assignment of iterations to processors may result in an uneven distribution of the
work�

� Communication Overhead� The ith iteration of the forall loop accesses the ith row of the matrix�
If each time the forall loop executes� the ith iteration is assigned on a di�erent processor than the
one it was assigned the previous time� the ith row will have to be migrated from one local memory
�cache� to another�

���� Experimental Evaluation
The multiprocessing environment
In our experiments we use two multiprocessors that are representative of their generations and span

a time range of over � years� ��� The Sequent Symmetry �released in ����� is bus�based cache�coherent
multiprocessor with slow processors a rather fast bus� and ��� the KSR�� � released in ����� is a large
scale cache�coherent multiprocessor with very fast processors and a large interconnection network� Com�
munication �compared to computation� is much more expensive on the KSR��� than on the Symmetry�

The Performance of Schedulers on KSR and Sequent
In our experiments we run the application under the three di�erent schedulers and we varied the

inherent imbalance by varying p� Fig� � shows the completion time of the application on the KSR�� and
Symmetry multiprocessors� The Symmetry results suggest that the dynamic and a
nity schedulers are
better �almost� everywhere in the range of imbalance� Load balancing seems too important to be ignored
on the Symmetry� while communication and synchronization overhead do not manifest themselves�
However� the picture on the KSR is much di�erent� Fig� � suggests that when p is more than ��� �

static scheduling is the best� This means that even if ��� of the processors are idle� it is better leaving
them idle� rather than migrate some work to them� By comparing dynamic and static scheduling only�
we see that as much as ��� of the processors should be idle before it is worth migrating some work to
balance the load�
Hence� we see that although dynamic scheduling was a reasonable choice for the ���� Symmetry� it is

not a reasonable choice for the ���� KSR� Static and a
nity scheduling are more appropriate� The reason
lies in the change of the cost of communication from one multiprocessor to another� As communication
is getting more expensive� while load imbalance does not change� communication and synchronization
overhead start to manifest itself� making static and a
nity schedulers attractive choices�

���� Simulation Results
We use simulation to quantify the performance di�erence among the three scheduler families� Although

simulation is only an approximation of the real execution of programs� it is very helpful in answering
questions that can not be answered using experimental evaluation� The questions we plan to answer
using simulation are�

� What is the performance di�erence among the scheduler families as we vary the migration cost�

� How much load imbalance in the application is necessary for the dynamic schedulers to outperform
the static scheduler� How does this imbalance vary with the number of processors�



��

���

����

�� �� �� �� �� �� �� �� �� ���

Time
secs

Percentage of nodes in clique

Sequent

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�� �� �� �� �� �� �� �� �� ���
Percentage of Nodes in the Clique

KSR��

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

�
�

�

�

�

�
�

�
�

�

�a
nity� �

�static� �

�dynamic� �

Figure �� Completion time of TC on Sequent and KSR��

The simulator
We developed a simulator that simulates the scheduling of N iterations on P processors� Each iteration

has a
nity for one processor� If the iteration is not executed on the processor it has a
nity on� it
encounters a multiplicative migration overhead m� The static scheduler assigns each iteration to be
executed on the processor it has a
nity on� The dynamic scheduler assigns iterations to processors using
a self�scheduling ��� method� Each processor takes the next available iteration from the central queue
where all iterations reside� The dynamic a
nity scheduler assigns each iteration to be executed on the
processor it has a
nity on� If a processor is idle� it searches the queues of the other processors� If it
�nds some processor that still has iterations to execute� it takes one iteration� executes it and repeats
this cycle until all processors run out of iterations to execute�

������ Simulation Experiments
Varying the Migration Penalty

In our �rst set of experiments we vary the migration penalty� that is the penalty an iteration incurs if it
is executed on a processor that has no a
nity to� For this set of experiments we simulated a ���processor
multiprocessor� that executes ����� iterations�
Our �rst experiment assumes an application with c � ��� that is� all the load is initially distributed

to ��� of the processors� while the rest ��� of the processors took only empty iterations to execute�
e�ectively� they have nothing to do� The completion time of the application under the three schedulers
appears in �gure �� The completion time is plotted as a function of the migration penalty� We see that
dynamic scheduling is reasonable only when the migration penalty is very small� In this range� static
scheduling is the worst of all� When the migration penalty becomes higher than �� then static scheduling
becomes better than dynamic� A
nity scheduling is almost always the best� and is signi�cantly better
than the other schedulers only in the range where the migration penalty is close to �� Everywhere else�
a
nity scheduling is close to the better of dynamic and static scheduling�
When the imbalance is ��� ��gure �� a
nity scheduling seems then only reasonable thing to do� Static

is out of the question� and dynamic is somewhere in between�

Varying the Imbalance

In this set of experiments we vary the imbalance the application may have� The imbalance of the
application� is represented by the imbalance factor� which is the percentage of idle processors after the
assignment of iterations to processors� An imbalance factor of �� means that ��� of the processors are
idle after the initial assignment of work to processors� We perform two experiments� when the migration
penalty is �� and when the migration penalty is ��
Figure � plots the completion time of the application when the migration penalty is �� We see that

when the imbalance is high� dynamic and a
nity scheduling are the best� while when the imbalance is
low static and a
nity scheduling are the reasonable choices� The crossover between static and dynamic
scheduling is when the imbalance factor is ��� The next �gure plots the performance of the schedulers
when the migration penalty is �� The results are qualitatively the same� only the crossover value has
moved to the point where the imbalance factor is about ��� In general a
nity scheduling is signi�cantly
better than the other policies� only close to the crossover point� while it is close to the best of the policies
everywhere else�



� � � � � � � � � �� ��

Time

migration penalty

load imbalance����

����������������������� �

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�

�
�
�
�
��

���
�����

��������� �

� � � � � � � � � �� ��
migration penalty

load imbalance����

����������������������� �

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
��

�

��
�
�
�
�
�
�
��

�
��

��
��

�
��

�
��

�

�a
nity�
�

�static� �

�dynamic�
�

Figure �� Completion time of the application imbalance factors �� and ���

� �� �� �� �� �� �� �� �� �����

Time

Imbalance factor

migration penatly � �

�������������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�����

� �� �� �� �� �� �� �� �� �����
Imbalance factor

migration penatly � �

�������������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��
�������������

�a
nity�
�

�static� �

�dynamic�
�

Figure �� Completion time of the application� migration penalty � and ��

�� Conclusions

In this paper we compared three scheduler families� dynamic� static and a
nity schedulers� We used
experimental evaluation on the Sequent and KSR shared memory multiprocessors� as well as simulations�
Our observations suggest that

� Dynamic schedulers are appropriate for previous generations of multiprocessors� but are not appro�
priate for recent ones�

� Static schedulers are better than dynamic ones� when the overhead related to data migration is
higher than the overhead related to load imbalance�

� A�nity schedulers are signi�cantly better than the others only for the range of parameters where

the imbalance is comparable to the migration cost� and close to the best of the other two schedulers
everywhere else�

Based on our observations we conclude that the performance advantages of static schedulers �low
communication and synchronization overheads� become more apparent with architectural trends� while
the advantages of dynamic schedulers �load balancing� do not improve with time� In the presence of little
imbalance� static schedulers are the appropriate choice� while in the presence of signi�cant imbalance
a
nity schedulers should be employed�

REFERENCES

�� E�P� Markatos and T�J� LeBlanc� Using processor a
nity in loop scheduling on shared�memory
multiprocessors� In Supercomputing ���� pages �������� November �����

�� C� D� Polychronopoulos and D� J� Kuck� Guided self�scheduling� A practical scheduling scheme for
parallel supercomputers� IEEE Transactions on Computers� C�������� December �����


