FORTH-ICS / TR-304 March 2002

Fast Parallel Comparison Circuits

for Scheduling

Kostas G. I. Harteros?

Abstract

Per-flow queueing and sophisticated schedulers are an important mechanism for providing
Quality of Service (QoS) guarantees in networks. Most advanced scheduling algorithms
rely on a common computational primitive: the priority queue. Priority queues can be
built efficiently using heap data structures, when the set of elements in the queue varies
slowly. However, if this set of eligible flows changes arbitrarily fast, new hardware struc-
tures are needed to support high-speed operation; in this work we develop such circuits.
We use a binary tree of comparators, which locates the minimum in an arbitrary set of
elements. The comparison operation is studied extensively and a 2-element comparator,
which is the main block of the binary tree, is designed. We developed an innovative or-
ganization for the tree, where signals are propagated across each 2-element comparator
as well as the tree levels, at the same time; in this way, the delays of the individual com-
parators and the delays of the tree levels are placed in parallel, rather than in series.
This binary tree of comparators is the heart of a weighted-round-robin scheduler that
we designed. Our designs are desicribed in synthesisable Verilog (HDL); in addition, de-
signs were described in C code for verification purposes. Synthesis results are presented

in terms of delay, power, and area, for a 0.18 CMOS process.

'ICS-FORTH, P.O. Box 1385, GR 711 10 Heraklion, Crete, Hellas. E-mail: harteros@ics.forth.gr
2Department of Computer Science, University of Crete, Heraklion, Crete, Hellas.

Acknowledgments

I would like to thank all those who helped me throughout my work. First of all I would
like to thank professor Manolis Katevenis who gave the idea for the whole work; I would
like to thank him both for his priceless suggestions and ideas during my work, and for
trying to reveal and communicate to me the way one should think while designing and

in general while working on scientific research.

I would like to greatly thank professor Dionysis Pnevmatikatos for his helpful remarks
on synthesis, and professors Apostolos Traganitis and Evangelos Markatos who partici-
pated for the evaluation of this work. Also, I thank George Kornaros and Christos Sotiriou
for teaching me CAD Tools.

I would like to thank Nikos Chryssos for many hours of working together and for
the discussions about this work, for his critical suggestions and observations. Also, I
thank Pavlos Robogiannakis for corrections on this document and Tassia Rissanou for

the transparencies of the presentation of this work.

I would like to thank Grigoris Gikas, Xeni Asimakopoulou, and Antonis Danalis for

their help in my first steps in the Computer Science Department.

I would like to thank Europractice and the University of Crete for providing many of
the CAD tools used and the Technology Libraries. Also I would like to thank the Uni-
versity of Crete and the Foundation for Research and Technology Hellas for the funding
provided.

Finally I thank my family, George, Irene, Vassilis and Voula, for their help and support
throughout my studies.

Contents

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24

3.1

3.2

Scheduling for QoS in Advanced Networks

Scheduling Disciplines Lo
Choices in designing disciplines oL,
Approaches to Service Schedules o0

Contributions of This Work

Priority Queue Implementations in Hardware

Weighted Round Robin o 0000
Related Work in Priority Queue Algorithms implemented in Hardware
Cases where Heap Data Structures are inappropriate

Algorithms for Minimum Value Determination in a non-sorted Set of Ele-

ments . ..o oLoL Lo e
2.4.1 Array and Row Architectures
2.4.2 Traditional Binary Tree Architecture

2.4.3 Parallel Operation of multiple Tree Levels

Comparator Circuits and Trees

The Binary Comparator
3.1.1 Definitions oL
3.1.2 The 2 Bit Comparator Cell
313 Coding e
3.1.4 The Circuit

The 2 Element Comparator

S Ot s W -

oo

12
12

14
14
17
19

3.3

3.2.1 The Ripple Comparator
3.2.2 The Square Root Carry Select Comparator
3.2.3 The Carry Look Ahead Comparator
3.2.4 Conclusions for the 2 Element Comparator.
The Binary Tree Comparator
3.3.1 The Binary Three with Ripple Comparators.
3.3.2 The Binary Three with Carry Select Comparators.
3.3.3 The Binary Three with Carry Look Ahead Comparators.

4 Design of the Scheduler

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Operations L
Tasks and Interfaceo
Element Representation and Wrap-around
Pipelining
Building the Datapath oo oo
Adding more Features
Optimizations for Fan-out
Economizing on Powero L oo

Conclusions on Datapath Design

5 Design Flow

5.1
2.2

Technology used for Synthesis
Binary Tree of Comparators
52.1 Delay Results
5.2.2 Area Results

5.2.3 Power Results

6 Conclusions

A Pattern Generator

B Synthesis Scripts

47
47
48
49
ol
52
57
29
60
61

62
63
63
64
65
69

71

73

74

List of Figures

2.1

2.2
2.3
2.4
2.5

2.6

2.7
2.8

2.9

3.1

3.2

The WRR scheduling with 5 flows. There are two cases presented: 1. The smooth
scheduling where the services are spread in time. 2. The bursty scheduling where the

services are gathered. L. L oL Lo oL
The work-conserving and the non-work-conserving options.
Reinsert eligible flows.o 000000 Lo oo
Example of WRR algorithm.o oo

The array architecture for the comparison of N elements, k-bit each. Each bit slice
(row) compares N bits and gives one bit of the winner M. The columns are the bits of

each element m;. L Lo e e e e e e e e e e e

(a) The architecture of the cell that enables the element to participate in the comparison
and propagates the disable signal to the next lower significant bit. (b) The coding of
thecell. oL oL e

The row architecture for the comparison of N elements, k-bit each.

(a) The structure of the circuit is a binary tree with 8 leaves (N = 16). Every block
is a 2 element comparator. The delay of the circuit is O(logN) = 4. The advantage of
this scheme is that comparisons of different elements are taking place in parallel. (b)

Arithmetic example for the determination of the total minimum.

The sequential events of the 16 element comparison. The active cells are indicated with
red color. Black color pinpoints cells that have completed the comparison. White ones

have not yet started. In instance V, the MSB of Min is ready after 4 cells delay.

The cell which the 2_elements_comparator consists of. The C; and Cs signals will be
encoded to represent the values of the choice. Table at the right shows the possible
values of C; and Cy as a function of the bits of the element. Soon, we will see the

dependence of Cl,i; CQ,Z' on Cl’ifl, 02’1;1

The Boolean equations for the carries and theresult.

10
10
11

15

16
17

18

20

24
28

3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

3.19

4.1
4.2
4.3
4.4
4.5
4.6
4.7

a) The AND-OR implementation of the circuit. b) The AND-OR_INVERT implemen-

tation. . . . oL L L L L Lo o e e e e e e e e e e e e
Inversion of signals for the cell;.o L 0oL,
Four-bit ripple-carry comparator: topology L.
Four-bit ripple-carry comparator: circuit implementation with inverse signals

Four-bit carry select comparator: topology.
The cs-cell and the table recording the functionality.
The Boolean equations for the carries.
The cs-cell circuit. Inversion of signals is used to minimize the delay.
a) The linear comparator. b) The square root comparator.
The carry select comparator’s configuration after the critical path delay optimization.

The carry look ahead implementation of the 2 element comparator.

The optimized carry look ahead implementation of the 2 element comparator for k=4.

The ripple, carry Look ahead and carry select delays for 2-element comparator.
Propagation delay for the three 2-element comparator structures in the binary tree.
Propagation delays of the binary tree structure with carry select comparators.

A 5-level binary tree with carry select comparators. Only one comparator per level is
shown for simplicity. The hybrid comparators are shown. The delays(with blue) of the

signals are matched.o 0oL o Lo oL

A 3-level binary tree with carry look ahead comparators.Only one comparator per level

is shown for simplicity.o Lo

Managing wrap around. The elements values can be only one color.
The top block of the N-flow WRR scheduler.
Forwards in the pipeline. Lo o Lol
The datapath of the WWR scheduler: a first approach.
An example of locating the address of the winner element.
The datapath of the WWR scheduler

An example of reducing the fanout of the root. 2-element comparators from Level-1 to

Level-3 have fan-out 2. oo e

28
29
30
31
32
32
32
34
35
36
38
38
39
41
42

44

46

30
a0
ol
93
o4
28

29

4.8

5.1
2.2
9.3

5.4

2.9

2.6

5.7

2.8

2.9

5.10

5.11

The power consumption after updating one element. The active 2-element comparators

at this cycle are highlighted.o 000000000

The general design flow followedo 0000000
Delay comparison of 2-element comparator circuit.

Delay comparison for binary tree with 8-bit elements. Three topologies are used for the

2-element comparator: ripple, carry look ahead and carry select.

Delay comparison for binary tree with 16-bit elements. Three topologies are used for

the 2-element comparator: ripple, carry look ahead and carry select.

Delay comparison for binary tree with 24-bit elements. Three topologies are used for

the 2-element comparator: ripple, carry look ahead and carry select.

Area comparison for binary tree with 8-bit elements. Three topologies are used for the

2-element comparator: ripple, carry look ahead and carry select.

Area comparison for binary tree with 16-bit elements. Three topologies are used for the

2-element comparator: ripple, carry look ahead and carry select.

Area comparison for binary tree with 24-bit elements. Three topologies are used for the

2-element comparator: ripple, carry look ahead and carry select.

Power comparison for binary tree with 8-bit elements. Three topologies are used for

the 2-element comparator: ripple, carry look ahead and carry select.

Power comparison for binary tree with 16-bit elements. Three topologies are used for

the 2-element comparator: ripple, carry look ahead and carry select.

Power comparison for binary tree with 24-bit elements. Three topologies are used for

the 2-element comparator: ripple, carry look ahead and carry select.

61

63
64

65

66

66

67

68

68

69

70

70

List of Tables

3.1
3.2
3.3

3.4

3.5
3.6
3.7

4.1
4.2

Operation of 2-element comparator.

The truth table of output m; and the choice.

The coding used for the carries of the cell. The number at the top left corner is the

serial number of the coding.o o000

The truth table of inputs/outputs based on the coding that is used for the carries of
thecell. Lo s e e

The Karnaugh maps for the carries of the choice.
The truth table of inputs/outputs of the carry select cell.

The Karnaugh maps for the carries of the choice.

The possible states for a flow in the scheduler.

Apply the out_flag to the initial condidtion of the 2-element comparator.

23
25

26

27
28
33
34

)
)

Chapter 1

Scheduling for QoS in Advanced
Networks

The Internet connects tens of millions of computers around the world, allowing them to
exchange messages and share resources. It is a loose collection of networks organized into
a multilevel hierarchy using a wide variety of interconnection technologies. At the lowest
level, ten and hundred computers may be connected to each other, and to a router, by
al local area network (LAN) or by a modem. Computer networks allow users to share
resources such as printers, file systems, long distance trunks, and sites on the World
Wide Web. Sharing, however, automatically introduces the problem of contention for
the shared resource. Given a set of resource requests in the service queue, a server uses
a scheduling discipline to decide which request to serve next. Scheduling disciplines are
important because they are the key to fairly sharing network resources and to providing

performance-critical applications, such as telephony and Video On Demand.

Most experts agree that future networks will carry at least two types of applications.
Some applications are relatively insensitive to the performance they receive from the net-
work (e.g. FTP). The performance requirements of such applications are elastic: they
can adapt to the resources available. Such applications are called best-effort applications,
because the network promises them only to attempt to deliver their packets, without
guaranteeing them any particular performance bound. Besides best_effort applications
networks are expected to carry traffic from applications that do require a bound on per-
formance(e.g. Voice). Those applications demand a guarantee of service quality from the
network. Guaranteed-service applications require the network to serve resources on their
behalf. This feature is called a Quality of Service (QoS).

The performance received by these applications depends primarily on the scheduling

discipline present at each multiplexed server along the connection’s path from a source
to the destination. These servers are typically the ones scheduling packets at each out-
put link in switches or routers. The provision of QoS guarantees requires isolation among
the multiple traffic flows, for each one to get its own behaviour characteristics and service
level. A prerequisite for good isolation is that traffic belonging to different flows be placed
on different queues i.e. per-flow queueing. At each output queue, a server uses a schedul-
ing discipline to choose which ready packet to transmit next, and control access to output
queue buffers. The server can allocate different mean delays to different connections by
its choice to service order. It can allocate different bandwidths to connections by serving
at least a certain number of packets from a particular connection in a given time interval.
Finally, it can allocate different loss rates to connections by giving them more or fewer
buffers. Thus, to build a network that performs QoS, scheduling disciplines are required

to support per-flow delay, bandwidth and loss bounds.

A scheduling discipline must satisfy four sometimes-contradictory requirements

Ease of implementation (for both guaranteed-service and best-effort connections)

Fairness and protection (for best-effort connections)

Performance bounds (for guaranteed-service connections)

Ease and efficiency of admission control (for guaranteed-service connections)

Each scheduling discipline makes a different trade-off among these requirements. De-
pending on the situation, some of these requirements may be more important than others.
The "best” choice, therefore, depends on the applicable binding constraints. There are

four principal degrees of freedom

e The number of priority levels
e Whether each level is work-conserving or non-work-conserving
e The degree of aggregation of connections within a level

e Service order (scheduling policy) within a level.

In a high speed network, a server’s scheduler may need to pick the next packet for
transmission every time a packet departs, which can be once every few nanoseconds.

Thus, it has a very little time to make a decision. A scheduling discipline for such a

network should require inexpensive and easy implementation in terms of hardware in-
stead of software. With modern VLSI technology the implementation of a complicated
scheduling algorithm is possible. The bounding constraint instead is mainly the memory
required to maintain scheduling state (such as pointers to packet queues, and memory
about the service already received by a flow) and the time required to access this state.

These problems are discussed in [IKO01].

1.1 Scheduling Disciplines

As mentioned earlier a scheduling discipline must satisfy four sometimes-contradictory

requirements. Those are analyzed in the following paragraphs [Kes97].

In a high speed network, a server’s scheduler may need to pick the next packet for
transmission every time a packet departs, which can be once every few nanoseconds.
Thus, it has a very little time to make a decision. A scheduling discipline for such a
network should require inexpensive and easy implementation in terms of hardware in-
stead of software. With modern VLSI technology the implementation of a complicated
scheduling algorithm is possible. The binding constraint instead is mainly the memory
required to maintain scheduling state (such as pointers to packet queues, and memory
about the service already received by a flow) and the time required to access this state.
These problems are discussed in [KKVK97] and [NKO1].

A scheduling discipline allocates share of the link capacity and output queue buffers to
each connection it serves. An allocation at a switch is called fair if it satisfies the maz-min
fair share criterion. Fairness is an intuitively desirable property of a scheduling discipline
serving best-effort connections. For guaranteed-service connections, which should pay the

network operator a fee in proportion to their resource usage, fairness is not a concern.

The third major requirement of a scheduling discipline is that it should allow a net-
work operator to guarantee arbitrary per-connection performance bounds. An operator
can guarantee performance bounds, for a connection only by reserving some network re-
sources. The user agrees that its traffic will remain within certain bounds and the opera-
tor guarantees that the network will meet the connections performance requirements. To
specify and guarantee performance requirements, the measurement of the connection’s
performance have to be more precise. It can be expressed either deterministically or
statistically. The former is refers to explicit defined bounds for every packet (e.g. 10s
end-to-end delay) and the latter to the probability for the set of the packets to meet the

bounds(e.g. 0.99 of the total number of packets will meet the bound). Four common

performance parameters are widely used in the literature: bandwidth, delay, delay-jitter

and loss.

A scheduling discipline should permit easy admission control. A switch controller
should be able to decide, given the current set of connections, whether it is possible to
meet a new connection’s performance bounds without jeopardizing the performance of
existing connections. Moreover the scheduling discipline should not lead to network un-

derutilization.

1.2 Choices in designing disciplines

As mentioned earlier there are four principal degrees of freedom in designing a scheduling
discipline [Kes97].

In a priority scheduling scheme, each connection is associated with a priority level.
Priority allows a scheduler to give packets at higher priority level a lower mean queueing
delay at the expense of packets at lower priority. A scheduler can have arbitrary priority

levels according to the number of classes the network operator wants to support.

The necessity of per-flow queueing lead to the priority queue, one of the most fun-
damental data structures. It is the basis for a class of queue scheduling algorithms that
are designed to provide a relatively simple method of supporting differentiated service
classes. In classic priority queue, packets are first classified by the server and then placed

into different priority queues.

A work-conserving scheduler is idle only when there is no packet awaiting service. In
contrast, a non-work-conserving scheduler may be idle even if it has packets to serve.
There are a number of arguments for and against the two schemes. Work-conserving
scheduler maximizes the utilization of the output bandwidth but in some cases it can
create jitter for congested flows. Non-work-conserving scheduler underutilizes the output

bandwidth but the behaviour of the traffic is predictable and easier to manage.

Another degree of freedom in the design of scheduling disciplines is the degree to which
individual connections are aggregated in deciding their service order. Usually, the sched-
uler has a small set of classes and every class has a large set of flows. It provides different
qualities of service to different classes, while flows within the same class share the same
service quality. The latter scheme can change introducing subclasses in the same class per-
forming hierarchical QoS. The latter scheme provides protection to the flows from each

other in a class.

1.3 Approaches to Service Schedules

Assume N flows (or queues) served by a scheduler with N priority levels [Kat01]. Each

flow (or queue) is associated with one priority.

The first and simplest discipline is to use strict priorities. The scheduler serves the
eligible flow (queue) with the highest priority. If this flow (queue) is ineligible is serves the
directly lower priority flow (queue),and so on. A starvation issue is associated with static
priorities. If the priority « € N is not policed or regulated and becomes ”persistent”
(i.e. always has a non-empty, eligible queue), then all levels below ¢ will be starved.
The solution is to ensure that all levels but the last one are policed or regulated. The
implementation is feasible with a priority enforcer /encoder chain of elements with a ripple
signal. To speed-up the ripple signal, analogous ideas to carry look ahead or carry select
can be used. A tree of OR-gates detects the presence of eligible entries among N in time

logoN.

The opposite approach is to use round robin (RR) disciplines. The scheduler now does
not always start the iteration from the flow with the highest priority as previously. In-
stead, the flow with the ”highest priority” is different at every iteration in a round robin
series. An issue of inserting the new eligible flow is raised with this approach which is dis-
cussed in [Kat01]. Various implementations are proposed for this algorithm: i) The first
one uses a programmable priority encoder/enforcer which is programmed to begin search-
ing for the first eligible flow (or queue) from different starting point. ii) The second uses

two static priority circuits removing the programmability of the previous implementation
[GM99].

One middle discipline-compared to the two formers- is the Weighted Round Robin
(WRR) service schedule. Every flow (or queue) is associated with a weight, which is
translated in two terms: Flow Service Interval (FSI) and Next Service Time (NST). The
former is inverse proportional to the weight associated with the flow (or queue) and the
latter is the time (measured in internal system units) that the flow (or queue) is scheduled
to be served in the future. Flows (or queues) are receiving performance by the network
according to their weight, in terms of bandwidth, latency and loss. No starvation issue
is raised. In order to perform WRR, a priority queue data structure is needed. The
implementation of that structure is the issue this work is dealing with. Priority queues

implementing WRR disciplines will be discussed in the next chapter.

Sorting has been a favourite subject in computer science research for the past few

decades. Since the advent of VLSI technology, specialized sorting circuits have been pro-

posed and analyzed [Tho83|. However, the complete ordering of the given numerical el-
ements is often not needed. Many practical applications, such as QoS scheduler, use a
priority queue which only require determining the minimum (or maximum) value. The
problem discussed in this report is the implementation of sophisticated scheduling al-
gorithm at high speed, when there are many thousands of contending flows, using priority

queues to perform QoS.

Priority queues with only few tens of entries or with priority numbers drawn from a
small menu of allowable values are easy to implement e.g. by using combinational prior-
ity encoder circuits [KaSM97]|. However, for priority queues with many thousand entries
and with values drawn from a large set of allowable numbers, heap or calendar queue
data structures must be used. The advantages of the former structure over the latter are
presented in [IK01], which uses a heap tree, with a pipelined heap manager. The idea in
this implementation is to keep the minimum (or maximum) element always at the top of
the tree, in order to find it in O(1) time. One disadvantage of the heap is the difficulty
in inserting and removing many elements from the tree. This cannot be done appropri-
ately with the heap implementations: only one operation can be executed per cycle in
the structure in one-cycle implementations. In contrary, one operation can be executed

per level of the heap per cycle in pipeline implementations.

1.4 Contributions of This Work

The approach proposed in this work is to find the minimum (or maximum) in a set of
arbitrary (non-sorted) elements using set of parallel comparators. Thus, the number of
elements, which participate at every comparison, is easily changeable at every iteration
of the algorithm. An element can participate or not according to a permission given by

the scheduler(implemented in one bit).

The main contribution of this work is the introduction of a novel comparator orga-
nization, where the binary tree of comparators is such that signals propagate in parallel
within the bits of each comparator and accross the levels of the tree. In this way, the
delays of the individual comparators and the delays of the tree levels are placed in par-
allel, rather than in series. Those comparators are discussed in Section 3 . The binary
tree of comparators is the heart of a weighted-round-robin scheduler that we designed.
Our design is in synthesisable Verilog form. Synthesis results of the design show a clock
period of 6ns, for a 256-flow scheduler, in a 0.18um CMOS ASIC technology.

The rest of the work is organized as follows. Section 2 talks about WRR and already

known implementations of priority queues, in hardware. Section 2.4 discusses two algo-
rithms for finding the minimum (or maximum) element in a set of arbitrary (non-sorted)
elements. The first one is already known, while the second algorithm was proposed by
Manolis Katevenis at the begining of this work. In Section 3 , the comparison operation
is studied, and three implementations for binary trees of comparators are examined in de-
tail: ripple-carry comparators as proposed by Manolis Katevenis, carry select, and carry
look ahead comparators as proposed by the author. In Section 4 , the scheduler datapath
using carry select comparators is designed and optimized. Finally, Section 5 presents the

synthesis results for the binary tree and its delay, area, and power consumption figures.

Chapter 2

Priority Queue Implementations in

Hardware

Previous sections explained the need for per-flow queueing in order to provide advanced
QoS in future high speed networks. To be effective, per-flow queueing needs a good sched-
uler. Priorities is a first important mechanism; usually a few levels of priority suffice, so
this mechanism is easy to implement. Aggregation (hierarchical scheduling) is a second
mechanism: first choose among a number of flow aggregates, then choose a flow within
the given aggregate. Some levels of the hierarchy contain few aggregates, while others
may contain thousands of flows; this work concerns the latter levels. One of the hardest

scheduling disciplines are those belonging to the WRR family.

2.1 Weighted Round Robin

Using per-flow queueing, incoming packets from different flows are stored in different
queues. As mentioned earlier each flow is associated with a weight. Flows with large
weight should receive better performance than those with small one. Flow Service Inter-
val FSI; of flow 7 is inverse proportional to the corresponding weight w;. Examples of
WRR are shown in Figure 2.1 .

The first example shows a quite smooth schedule minimizing bursty transmissions from
the switch. The implementation of this scheme is difficult with priority circuits, because
it is difficult to manage the eligibility bits. If circular linked lists are used, the re-insertion
in multiple positions is difficult. If a set of eligible flows varies slowly, the schedule can be

computed off-line. On the other hand, if the set varies fast (or weights change often), a

FSI ~1/W

1. Smooth Schedule

w 50 | 30 | 10 5
2. Bursty Schedule

FSl | 20 | 33 | 100| 200

l—/A|/B|/A|C|A B|/A|D|/A|/B|A|B|A|C|A|B|A A | B

2—>=|/A |A|A|A|A|B|B|B|C|D|A|A|A|A|A|B |B |B|C

10 10

Figure 2.1: The WRR scheduling with 5 flows. There are two cases presented: 1. The smooth schedul-

ing where the services are spread in time. 2. The bursty scheduling where the services are gathered.

priority queue is used to recompute schedule on line. The second example shows a bursty
approach of the WRR service. The implementation is feasible with RR. In every visit to

the flow, number of packets (bytes, words) are used according to flow’s weight.

Priority queues in a WRR schedule are defined according to the next statements.

Maintain a varying set of eligible flow

Associate NST with each of them

Find and serve the (eligible) flow that has the minimum (earliest) NST

Reschedule for future time the flow served

The issue of real or virtual time in priority queues arises, associated with work-
conserving or non-work-conserving disciplines. A non-work-conserving scheduler defines
a real time. The NST of the flow is measured in terms of the latter. Scheduler can be
idle for a period of time, if no flow is rescheduled to be served at this period. In contrast
to that, a work-conserving scheduler defines a ”virtual time”. After serving one flow, the
pointer of virtual time ”jumps” to the next minimum NST in order to serve the corre-
sponding flow immediately. An example is shown in Figure 2.2 . This work assumes

work-conserving scheduling using virtual time clock.

Another matter of great importance is where in the time to reinsert a flow that be-
comes eligible. Assume that t, is the virtual time and tygr; is the NST of the flow .

There are two situations that will be discussed and drawn in Figure 2.3 .

Non-work-conserving Work-conserving

“WB A A B “AB. A A B

L g Gdle b L L ! b
[[\ [[\ !\/ [
"jump" T
Real time Virtual time

Figure 2.2: The work-conserving and the non-work-conserving options.

1. The virtual time (t,) exceeds the NST of the reinserted flow ¢ tysr,; (ty>tnsr)-
Flow ¢ must reinsert at the ”time point” where it was scheduled to be served and not
earlier. If the latter happens, flow 7 can take advantage over the others by being
consecutively eligible and ineligible, and always reinserted into schedule before the

tnsT,-

2. The virtual time (t,) is behind the NST of the reinserted flow i (t,<tysr,;). Flow
¢+ must reinsert at ”current time” and not earlier. If the latter happens, it will be

served against other flows.

Many algorithms are dealing with reinsertion and computation of NST discussed in
[Zha95]. These issues account for the differences among the weighted fair queueing al-

gorithm and its variants [Kes97, ch9].

t <t t >t

\ NST.A v NST.A

Reinsert

Aineligible A eligible A ineligible A eligible Dok’l\'OT reinsert

\L\&Tl o

t t
[| | | | - | | | | -
T \ + \ \ \ \ \ T
Lasttime A vty al time Last time A virtual time
was served was served

FSlfor A FSl for A

Figure 2.3: Reinsert eligible flows.

This is the time to present the WRR algorithm with an example, in order to under-
stand the sequence of events. Figure 2.4 presents eight flows, A through H. Five of
them are currently active (non-empty queues). The scheduler must serve the active flows

in an order such that the service received by each active flow is proportional to its weight

10

factor. ”Current” time is 150 and flow A is going to be scheduled for service, according
to its FSI to "future” time 183. Also, the other four flows are scheduled to be served in
"future” times: D at t=155, H at t=158, G at t=162 and B at t=170. The flow to be
served earlier is the one that has the earliest, i.e. minimum scheduled NST. In this exam-
ple, this is flow A. This flow remains active after its head packet is transmitted, so it has
to be rescheduled. The FSI of A is 33 added to current ”time” 150: tygr 4= 150 + 33 =
183. Flow A will not be served again until the current ”time” reaches 183. Continuing,
”time” advances to 155 and flow D is served and rescheduled to be served again in ”time”

205. If flow C will not receive any new packet, after ”time” 662 it will be removed from

schedule.
A B (3 D E F G H
Flows —
I — —
I — —
I — —
I — —
I — —
— — — —
I — — —
Current Time
Weights 30 10 20 20 10 5 2 3
150 WRR
Scheduler
FSI 33 100 50 50 100 200 500 333
Winner
R T P P TR A AR T V.
10 (e)
o e o
t
150 155 158 162 170 205 216 249 255 270 282 305 315 491 662

Figure 2.4: Example of WRR algorithm.

The scheduler operates by keeping track of a NST number of each active flow. In
each step, the minimum of these numbers must be found and updated if the flow remains
active or removed from schedule if the flow becomes inactive. When a new packet of an

inactive flow arrives, that flow has to reinsert into the schedule.

11

2.2 Related Work in Priority Queue Algorithms im-

plemented in Hardware

Priority queue can be implemented in hardware in many different ways. all of them are
based in keeping track of a list of numbers. The simplest implementations of priority
queues are discussed in [MRS00]. There, priority queues are used for per-packet queue-
ing. The model of the switch considered is characterized by shared buffer space, and
output queueing, with separate priority queue serving each output link. The per-packet
queueing has a prohibitive cost in hardware for large number of packets N. The latter
causes fan-in and fan-out problems to the structures introduced in that work (binary tree
of comparators, FIFO priority and shift array). The last structure introduced (hybrid
systolic/shift array) tries to solve most of those problems. This implementation is similar
to ‘Aa linked list. Thus, a power issue is raised; at every insertion or deletion many ele-
ments have to move from their position in the list, which is a power-consuming task for
large N. In addition, an Other approaches are the heap and the calendar queue data struc-
tures. Discussion about those data structures can be found n [IK01], where a pipelined
heap manager is introduced. Every level of the tree is one stage of pipeline. The ele-
ments of the heap are stored in 2-port SRAMS and the operations performed at every
stage of the pipeline are: read, compare and write. The design scales well with the num-
ber of elements. Insertions to the structure are performed from the root element. Two
operations are implemented: insert and delete. Consecutive deletes have one stall cycle
between them. In contrary to that, the scheduler presented in this work can insert and

delete as many flows as necessary, in the same cycle.

The above mentioned implementations are using data structures to keep the elements
sorted. Instead, this work deals with algorithms for the minimum value determination in
a non-sorted set of elements, presented in Section 2.4 . Before that, the environment of

the scheduler will be defined and the problem with the heap will be explained.

2.3 Cases where Heap Data Structures are inappro-

priate

A scheduler is a critical part of a switch. It is responsible for the order the switch serves
flows and expresses the policy of the network administrator. The scheduler interacts with

the Queue Manager. The scheduler receives inputs about the eligible/ineligible flows from

12

the Queue Manager, and responds with the next flow to be served by the queue manager.
In addition, the scheduler receives backpressure information from the flow control. All
these are expressed as ready bits. There is one ready bit for every flow. One bit suffices

to describe the two states of a flow: eligible/ineligible.

The first approximation to the eligibility of a flow is the following: Every flow having
a non-empty queue is eligible. A flow becomes ineligible if the connection ends or if all
the packets in the queue are served. A closer look at the switch uncovers more situations
where a flow may be ineligible. The first one has to do with a problem called memory
interleaving. The physical memory where packets are stored is usually SDRAM. Header
packets from different flows may be stored in the same SDRAM bank. However, consec-
utive accesses to the same bank need ”wait” cycles, for the necessary precharging of the
bank. Thus, flows having packets in the just accessed bank become ineligible for the next

iteration of the scheduler.

A second reason to make flows ineligible is backpressure. The cause of backpreassure
signals can be internal or external to the switch. Assume a buffered crossbar is used
in the switch [CK02]. One scheduler is used at each input, which sends packets to the
buffers at the crosspoints. If the buffers at one crosspoint are filled, backpressure signals
are sent to every flow of that input having packets for that output (crosspoint). Those
flows should be ineligible for that input scheduler. Furthermore, there are schedulers at
each output. These accept many packets arriving simultaneously at the corresponding
crosspoints (inputs to those schedulers). Thus, many flows may become eligible at the

same time.

Next consider a switching fabric rather than a crossbar. Even though those elements
are blocking or non-blocking, a link through them could be congested. Thus, backpressure
signals must sent to flows having packets for this link. All of these flows must become
ineligible at the same time. Another situation concerns backpressure in a switch level. A
”hot-spot” could occur somewhere in the network, where many flows send packets there.
This could cause backpressure signals form the ”hot-spot” switch to previous switches.
Those make many flows ineligible at the same time. As soon as, the problem is solved to

the overloaded switch, the previously ineligible flows should become eligible again.

Thus, many flows may change state at the same cell time. As a result, many flows
may be inserted to or removed from the priority queue. The number of elements in the set
(which actually is the priority queue) may vary fast. Thus, it is difficult for the heap to
keep track with fast changes in the number of its elements. The solution to that problem is

a brute force approach: use a circuit capable to quickly find the minimum in an arbitrary

13

(non-sorted) set of elements. In addition, simultaneously insertions and deletions should
be performed easily. An already proposed solution and the one proposed in this work are

discussed in the next section.

2.4 Algorithms for Minimum Value Determination in

a non-sorted Set of Elements

The problem of minimum determination is formally defined as follows. Given a set of
N numerical elements nq,n,,...ny, it is desired to produce a number M € N such that
M >n; (M <n;) (N>i>1). The following discussion assumes that each numerical
element n; is represented by k-bit unsigned binary number (n; k1,7 k—2,Mk—3,---Ni0)-
Some already known solutions are presented and discussed in the section array and

row architecture and our contribution is presented in the binary tree architecture.

2.4.1 Array and Row Architectures

The array architecture proposed in [VM93] determines the mazimum value of N numer-
ical elements. With a small change, the same circuit can determine the minimum value.
The circuit performing the latter operation is shown in Figure 2.5 . This architecture is
organized as a k-by-N array of cells. Each cell is labelled by its row and column indexes
according to its position in the array. The m inputs in column (i) of this array provide
the bits of an element. The N modules in a row (j) construct a bit slice of the N ele-
ments. Every disable signal (the choice) in the first row (j = k - 1) is set to zero, which
means that all the elements can participate in the comparison. Each bit slice performs
parallel operations to determine one bit M(j) of the minimum value. Enable signals of bit
slice j announce the choice to the bit slice j-1. The elements that do not match with the
output at the current bit position are removed from further comparison, by setting the

correspondence disable signal to ace. Afterwards, the next bit slice starts the comparison.

At the end of the process, if n; is the minimum of the set ni,ns,...ny, the choice
(final) will be represented with 1 zero and N-1 aces. The 1 zero will indicate the origi-
nating column of the minimum in [position. In other words, this ace (or aces) indicates
the winner (or winners) element of the comparison. The invariant condition that must
be satisfied for disable signals is the following: the j bit slice can change the bits of the
choice only from zero to ace and not the opposite way. No change from ace to zero is per-

mitted, because previous bit slices decided to extract the element, by setting the disable

14

signal to ace. The disable signals are ripple, thus the signals M(j) are not ready until
the disable(j) signals are ready. The M signals are stabilized sequentially, from the Most
Significant Bit to the Least Significant Bit.

ELEMENT ELEMENT LI ELEMENT
1 2 N
j_ > M(k-1)
disable(k-1,1) = 0 disable(k-1,2) =0 disable(k-1,N) = 0
BIT k-1 nk-LD) | (1,1 Mkl | nk-12) | (k-1,2) M2 L nkeLN) | (k-L,N) ML)
M(k-1) M(k-1) M(k-1)
disable(k-2,1) disable(k-2,2) disable(k-2,N)
= > M(k-2)
BIT k-2 nk2.1) | k-2.1)| M(k-2,1) n-22) | 422 M(k-2,2) cee 262N | oy M(k-2,N)
M(k-2) M(K-2) M(k-2)

j_ > M(0)

disable(0,1) disable(0,2) disable(0,N)

n©01) |1 M(0,1) n(0,2) ©2) M(0,2) v .. NON) ON) M(O,N)

L MmO ‘m W

BITO

Figure 2.5: The array architecture for the comparison of N elements, k-bit each. Each bit slice (row)

compares N bits and gives one bit of the winner M. The columns are the bits of each element n;.

The architecture of the cell is shown in Figure 2.6 . The disable signal permits the
data to evaluate the output M of the N-input AND gate of each bit slice. This M signal

returns back to the cell, in order to evaluate the disable signal for the next bit slice.

The circuit has two major disadvantages, which may lead the promising architecture
to poor delay performance. The first one is the large fan-in of the N-input AND gate.
The AND gate takes as input the result of every cell at each bit slice, resulting to a fan-in
proportional to the number of elements. The other disadvantage is the fan-out of that
gate. The AND gate drives back every cell at each bit slice, giving a fan-out proportional
to the number of elements (as in fan-in). This significant delay is in the critical path
and becomes the bottleneck to the design performance. The computational complexity
of this algorithm is not O(k) as mentioned in [VM93] but depends on the number of
the compared elements. The dependency is generated by the large fan-in-fan-out AND

15

Inputs Outputs
disable(i,j-1) disablej_1 | bit slice resultj_1 | dataj_1 || cell result; | disable;
| cell_result(i,j-1) 0 0 0 0 0
data(i,j-1) — > > 0 0 1 1 1
bit_slice_result(i) 0 1 0 X X
0 1 1 1 0
1 0 0 1 1
v 1 0 1 1 1
disable(,j) 1 1 0 1 1
1 1 1 1 1

Figure 2.6: (a) The architecture of the cell that enables the element to participate in the comparison
and propagates the disable signal to the next lower significant bit. (b) The coding of the cell.

gate. The implementation of that gate will determine the computational complexity of
the algorithm. One possible implementation is a tree of AND gates, which gives O(logaN)
complexity. An increment O(logsN) to the complexity is added by the large fan-out of
the AND gate according to the next solution. A balanced tree of buffers with gradually
increasing load is added to the output of such an AND gate. The calculation, that is M
and the choice (final), is finished in one cycle time. The area and the consumed power

are increasing linearly with N and m for the cells and logarithmically for the AND gates.

The row architecture based to the previous paper proposed in [VR94]. It uses one bit
slice from array architecture and some storage elements. The circuit is shown in Figure
2.7 . The comparison of N elements can be done in m cycles. The comparison starts
with the most significant bits of every element at the first cycle. The most significant bit
of the result M, appears at the output of the AND gate. At the next cycle, it will be
stored in an m-bit left shift register, while the next most significant bit appears at the
output of the AND gate. After m+1 cycles the minimum of N elements will be available
in the m-bit left shift register and the 1 zero at the output of the D flip-flops will indicate
the origin of the minimum. Like the array architecture, the computational complexity
of the procedure presented is dependent on the number of elements. The complexity
of the algorithm is O(k). In contrast to the array architecture, the area depends only
on the number of elements and not on the number of bits in the element. Thus, it is
approximately k times smaller than that of the array architecture, plus the area of the D
flip-flops and the k-bit shift register. Unfortunately, the consumption of power increases
with respect to the array architecture. The number of calculations performed by the two

circuits is the same but the row architecture must evaluate the sequential parts of the

16

circuit (register and flip-flops) in every cycle.

ELEMENT ELEMENT e o0 ELEMENT
1 2 N

v M m Bits Left-Shift Register

ONE BIT n(1) n(2) n(N) . A
PER CYCLE [l [
v e R

1) ()] coe (N)
M M M
| |

QD QD«J QD
enable(1) enable(2) enable(N)

clock

L]

Figure 2.7: The row architecture for the comparison of N elements, k-bit each.

The disadvantages mentioned for the array architecture record to the row architecture.
The large fan-in-fan-out AND gate remains and becomes the bottleneck to the delay of

the circuit.

2.4.2 Traditional Binary Tree Architecture

In order to overcome the significant delay of the previous algorithms, first we can use
a binary tree of comparators, as shown in Figure 2.8 . Each node is a 2-element com-
parator. Elements are presented to the tree leaves and are compared in pairs in parallel.
Assume that in O(1) times we can find the minimum (maximum) of two elements. Thus,
the bottom level performs N/2 calculations in O(1) time. The result of each calculation is
presented at the outputs of the 2- element comparator. Subsequently, the next upwards
tree level performs N/4 calculations in parallel. It compares in pairs the results of the
lower level, in O(1) time. The previous process continues sequentially in all levels, until
the total minimum (maximum) is calculated by the root comparator. The root has al-
ways the minimum (maximum) of the set of N elements. The fact that the two elements
comparator forwards one of its inputs to the output, gives the opportunity to an element
to travel through the nodes of the tree towards the root. Its fate is to win at every com-
parison and become the total minimum (maximum) or to be defeated at a certain node

by another element. The loser’s path stops at that node.

The implementation for N = 16 is shown at Figure 2.8 . The block that appears in
every node of the binary tree is called 2_element_comparator. The function that executes

is the min(A, B) (or max(A,B)). It presents at the output the winner, which is one of

17

the two elements (A, B) lying at the inputs. The other output of the block is one bit
that indicates which of the two input elements is the winner. This output will be used to
denote the origin of the final winner element. The elements are inserted at the leaves of
the tree (Level-1). All the 2_element_comparator blocks at Level-1 start calculating for

the minimum (maximum) simultaneously.

min(A,B)
|

2_elements_comparator

the choice

Total Minimum

Level-4

Level-3

n(1-4) $ n(5-8)
| | |

Level-2

Level-1

n(9-12)
9,1En(11,12n(13,14
| | |

IR A L]

nl) n@2 nB n@ nB) n@6G n@ n@d n@O n@0) n(l) n(2) n(13) n(14) n(15) n(16)

@

Level-4

Level-3
12 15 8 1 10
[
Level-2
12 18 15 32 8 14 10 10

Level-1

(b)

Figure 2.8: (a) The structure of the circuit is a binary tree with 8 leaves (N = 16). Every block
is a 2 element comparator. The delay of the circuit is O(logN) = 4. The advantage of this scheme
is that comparisons of different elements are taking place in parallel. (b) Arithmetic example for the

determination of the total minimum.

As soon as all the Level-1 2_element_comparator blocks finish their calculation, the
winners are present at the corresponding outputs. For example, the winner n(1,2),
which is one of (nl, n2) is moving one level up to the tree. There it is compared
with the winner n(3,4), which is one of (n3, n4). The procedure continues with Level-2
2_element_comparators taking the torch from those at Level-1 to execute the compari-

son. A numerical example is presented in Figure 2.8 for the determination of the total

18

minimum. The winner element (8) travels from the leaves through the nodes, indicated
by the curve, to the root. The complexity of calculation of the proposed binary tree al-
gorithm is equal to the height of the corresponding binary tree. Thus, for a set of N
numbers, it results to O (log2N). The complexity of this architecture, like the previous
one, depends logarithmically on the number of elements. The area and power are also

logarithmic functions of N.

The binary tree forces N to be power of two. If N = 2k, then 2k-1 comparators must
be used. In fact, all the values of N can be used by performing the calculation with a non-
balanced binary tree. The delay in such architecture is dominated by the longest path,
which resides at the heavy sub-tree. For example if N = 129, we can use 127 comparators
in a binary tree calculating the minimum (maximum) among 128 elements at O(logy128)
= 7. The result of the previous sequence is compared with the remaining element, adding
one more level of delay resulting to N=128 comparators. This scheme is actually a non-
balanced binary tree with 8 levels. The overall delay is O(logaN) = 8, where N = 28 =
256. Thus we could compare N elements, tolerating the same delay, with N& {129, 130
...256}, by just adding more 2-element comparators at the light sub-tree. This is a general
conclusion to which all the sets {N;, Ny ...N,}, 2¥ < N; < 2F*lare being subjected.
The cost of area increases linearly as the number of elements grows. The evolution of
technology overcomes this problem, making the delay to be the bottleneck rather than

the area of a circuit.

2.4.3 Parallel Operation of multiple Tree Levels

The inovation of this work is to start the comparison at Level-(i+1), before the end of the
comparison at Level-(i). The above is possible by starting the comparison of two elements
from the most significant bits (MSBs), sequentially comparing all the bits, one-by-one.
This approach to the comparison operation is different from the traditional implemented
in comparator circuits; based on the subtraction operation, traditional comparators rip-
ples the carries form the LSBs to the MSBs. Continuing with our algorithm, as soon as
the bits from the MSBs comparison at Level-(i) are generated, are given to Level-(i+1).
Thus, the latter starts the comparison before the end of the former. The procedure con-
tinues as described and ends as soon as the calculation reaches the least significant bit
(LSB) of the last Level. The sequence of events and the propagation of the results in
the binary tree is described in the next paragraph, in order to calculate the delay of the

circuit.

Assume that we have N=2k elements, each one having k bits (ng_y,...n;,nq). In ad-

19

dition, it is assumed that all 2_element_comparators at Level-0 (the leaves of the binary
tree) start the comparison simultaneously, because all the elements are available at the

same time. R is the result of every 2_element_comparator.

Mnnmum Mnnmum
Level-3
Level-2
Level-1
[I Level-0
NN Nyny NgNg Ny ”s Ng Mg Ny Ny NygNyg NygNyg NN NNy NgNg Ny na ng Mg NNz NigNyy Nys Nyg
Mwmum Mmmum
m@[}] Level-3
Level-2
Level-1
Level-0 ﬁ%%
NN NgNy NgNg Ny Mg NgNyg NyyNyy NygNyy NygNyg NN N3Ny NgNg NNy NgNyg NygNyp NygNyy NygNyg
Mwumum
Level-3

Level-2
Level-1
Level-0

NN NgNg NgMNg Ny Ny NgNyg NyyNyp NigNyg NigNyg

Figure 2.9: The sequential events of the 16 element comparison. The active cells are indicated with red
color. Black color pinpoints cells that have completed the comparison. White ones have not yet started.
In instance V, the MSB of Min is ready after 4 cells delay.

Every bullet describes events taking place in parallel, while sequential bullets describe

sequential events.

e The 2_element_comparators at Level-(0) generate the Ry_; ¢ bits (the second index
shows the level that generates the bit) , which are the result of the comparison by
pairs of ngy_; 2-MSBs. These bits are propagated immediately to Level-(1) of the

binary tree.

e The 2_element_comparators at Level-(0) start the comparison of the ng o bits.

The resulting Ry_oo bits are propagated to Level-1 of the binary tree. The

20

2_element_comparators at Level-(1) start the comparison of Ry_1 ¢ bits, since the
inputs are ready. The generated Ry, bits are propagated to Level-2 of the binary

tree.

e The 2_element_comparators at Level-(0) start the comparison of the ny_3 bits. The
resulting bit Ry_3 o is propagated to Level-(1) of the binary tree. The 2_element_comparators
at Level-1 start the comparison of the Ry_o bits. The generated Ry_o; bits are
propagated to Level-(2) of the binary tree. The 2_element_comparators at Level-(2)
start the comparison of the Rx_;; bits. The resulting bits R;_; » are propagated to
Level-(3) of the binary tree.

e The sequence of events is terminated, as soon as the 2_element_comparator at Level
n (the root of the tree) calculates the Rg, bit, which is the last bit of the winner

element.(n=logyN)

Figure 2.9 shows the sequence described earlier for N = 16. In instance I (refers to the
first bullet), the first cell of every Level-0 2_element_comparator, which is marked with red
color compare the 2 MSBs bits. In instance II (refers to the second bullet), every Level-
1 2_element_comparator compare the 2 MSBs and every Level-0 2_element_comparator
have already proceeded to the next cell (e.g. comparing the next MSBs). In instance IV,
it is observed that the Level-3 2_element_comparator has provided the MSB of minimum

after 4 cells delay.

21

Chapter 3
Comparator Circuits and Trees

The speed of the arithmetic elements often dominates the overall system performance. A
careful design optimization is required. It rapidly becomes obvious that the design task
is not straightforward. There exist multiple equivalent logic and circuit topologies, each
of which has its own benefits and disadvantages in terms of delay, power and area. The

optimization at only one design level leads to inferior designs.

The basic unit of the binary tree is the 2_element_comparator block. This arithmetic
block accepts two numbers as inputs and presents the minimum of them at the output.
The operation executed by this block is similar to the addition operation. The addition
operation is probably the mostly used arithmetic operation. Careful optimization of the
adder is of outmost importance. This optimization can proceed either at the logic or
circuit level. Typical logic-level optimizations try to rearrange the Boolean equations so
that a faster or smaller circuit is obtained. There are multiple design implementations
examined for the addition operation such as carry look ahead or carry select[Rab96]. Cir-
cuit optimizations, on the other hand, manipulate transistor sizes and circuit topology to
optimize speed. The same ideas that led to the implementation of fast adders will be

followed for the implementation of fast comparators.

At the following sections a short presentation of fundamentals of comparator circuit
is provided, followed by ripple, carry select and carry look ahead implementation of the

comparator circuit.

22

3.1 The Binary Comparator

3.1.1 Definitions

The 2-element comparator is sliced into basic cells that compares the 2-bits comparison.
Assume two k-bit numbers A (ay_1ax_2...a9) and B (bx_1bg_s...bg) to be the inputs and
one k-bit number M (mj_img_s...mg) to be the output of the 2-element comparator.
According to the operation executed by the comparator block the corresponding number
(A or B) will appear at the output. Table 3.1 records the possible operations and

outputs.

The decision is taken once from the 2-bit comparator cell that first found unequal bits
of the elements A and B. This decision and can no longer change from the next significance

cells following in the comparison chain. The nature of the comparison operation forces the

Inputs | Operation | Outputs
A> B | Maximum | M = A
A> B | Minimum | M =B

Table 3.1: Operation of 2-element comparator.

calculation to start from the MSBs. Thus, the cell that operates the 2-MSBs comparison
must advertise the choice to the cell that compares the two next significance bits. The
choice is the analogous to the carry of the addition operation. Three states can occur for
the choice: ” A equals B”, ” A is the minor”, ”B is the minor”. Three states can be coded

with two bits. Thus, the choice consists of two signals C} and Cs.

One invariant condition, which must be satisfied across the 2-element comparator, is

the following:

2-bit comparator cells after the one that took the decision on behalf of A or B, cannot

further change the value of the choice.

3.1.2 The 2 Bit Comparator Cell

As mentioned earlier the basic block of the 2-element comparator is the cell that operates
the 2-bit comparison. A k-bit 2-element comparator is consisted of k such cells. Every

cell executes the same operation that includes two steps:

1. It produces the choice to be advertised to the cell that compares the two next sig-

23

nificance bits, including the information from the choice calculated by the previous

cell.

2. Tt produces the m; bit of the result M, which is one of the current a; or b; bits (of
A or B) and presents it at the output, using the value of the choice produced by

the current cell.

The cell that operates the 2-bit comparison and the possible values of the choice are shown

in Figure 3.1 . In table in Figure 3.1, the contribution of the previous value of the choice

i

b; the choice
0]0 A equals B
Cirivy —=t — Cy; d
cel; 0 | 1 | Ais the minor/B is the major
C vl T . C2|
e 1 | 0 | Ais the major/B is the minor
T T 111 A equals B

Figure 3.1: The cell which the 2_elements_comparator consists of. The C; and Cz signals will be en-
coded to represent the values of the choice. Table at the right shows the possible values of C; and C, as

a function of the bits of the element. Soon, we will see the dependence of Cy ;, Ca,; on Cy ;_1, Ca,i1.

to the determination of current value was not taken into account. The initial condition
of the signals C; and Cgy is ”A equals B”. Those are preserved and propagated along
the comparator’s sequential cells, as long as the condition a; = b; is valid for every pair
of bits at the inputs. As soon as the initial condition becomes invalid (a; # b;), it is
changed and the new value of the choice is one of the others presented in table in Figure
3.1 . According to the invariant condition, this new value of the choice can no longer
be changed by the remaining next significance cells. It is preserved along the 2-element
comparator, until the end of comparison. Table 3.2 shows the relation between the
inputs and outputs of cell; as evident of the above analysis. The first 2 rows of Table 3.2
specify the state, in which one of the previous cells has taken the decision and changed
the initial values of C; and C,. Those values are preserved and propagated through the
cell unchanged. The initial condition ” A equals B” arriving at the inputs of the current

cell in the four last rows of Table 3.2 can change if and only if a; #b;.

3.1.3 Coding

There is another issue to deal with before the specifications of the cell are defined precisely

and the design become feasible. The coding of the signals of the choice must be done

24

Inputs Outputs

The choicej;1 ait1 | bit1 The choice; m;

A is the minor/major | x X A is the minor/major a;
B is the minor/major | x X B is the minor/major b;
A equals B 0 0 A equals B 0
A equals B 0 1 A is the minor/B is the major | 0/1
A equals B 1 0 A is the major/B is the minor | 0/1

A equals B 1 1 A equals B 1

Table 3.2: The truth table of output m; and the choice.

carefully, because it influences the performance of the total design in terms of time, power
and area. The necessity for coding arises because the possible states that may occur
during the comparison of 2 elements are 3 and the total states described by 2 bits are 4.
The remaining state will be "don’t care”. This is a problem of 4 discrete objects to be
placed in 4 positions. Thus, if E is the number of different combinations, it is given by
the formula

EFE=4=1-2-3-4=24

This is the total number of codings. Different codings produces different circuits, which
must be examined in order to choose the one with the best features. The choice will be

done with criteria the minimum delay, power consumption and minimum area.

The existence of two symmetries reduces the number of different circuits. The first
symmetry is between the two input bits of cell a; and b;. The mutual transference of
the two input bits gives the same circuit for every coding. This results to a total number
of circuits equal to 12. The second symmetry is between the two carries C; and Cs.
For every coding, the mutual transference of the two carries gives the same circuit. Two
out of 12 remaining codings are complementary and do not obey to that symmetry. In
contrast to that, the other 10 are subject to the latter. Consequently, the number of

different circuits is reduced to 7.

Generally, the information propagated by C; (or Cy) depends on the previous values
of both carries C; and Cy. This could make the values of both carries C; ;41 and Cg ;11
requisite to the generation of the new Cy; (or Cy;). Some codings partially question the
previous acceptance by performing the calculation of C;; using only the value of Cy ;.
Further reduction is achieved with the assistance of an observation about the values of

the choice that selects A and B to be the winner. Faster circuits are produced if those

25

values are not complementary. Thus, the value of the choice that selects A must not be

complementary to the value that selects B.

There are two families constructed of the 7 remaining circuits: the first uses comple-
mentary signals for the value of the choice, after decision for the winner is taken. The first
family’s Boolean equation for C, is produced by Boolean equation for Cy, if indexes of the
variables are mutually transferred (1<»2). Thus, the circuit that calculates C, is identical
to the circuit that calculates C;. In addition to that, the generation of the carry C,; (for
the i-th bit) uses both the values of Cy ;41 and Cq;41 (of the (i+1)-bit). This is also the
case for Cy ;. In simple words for the generation of s new carry, the values of both previous
carries are needed. In contrast to that, the second family uses non-complementary values
of the choice that selects A and B to be the winner. This feature gives an interesting
result: the evaluation of C;; (or Cs;) depends only on the value of Cy ;11 (or Cojt1).
Therefore, if C;; (or Cq;) depends on Cy,41 (or Cyite) then Cy; (or Cyi;) depends on
both C; ;11 and Cg,yq. It will be proved later that if the cells are cascaded the delay
of both carries concludes to be 1 level of logic. Concluding, the second family produces
faster circuits than the first one, because less amount of logic is used. In addition to that
result, all codings that belonging to the second family produce the one circuit, which will

be used for the implementation of the 2-bit comparator cell.

After the previous discussion, the coding chosen for the cell is shown in Table 3.3 .

Useful observations can be registered for this coding. Initially, the renaming of the carries

2 | a; | b; the choice
00 A equals B
0 | 1 | Ais the minor/B is the major
1 | 0 | Ais the major/B is the minor
1] 1 A equals B

Table 3.3: The coding used for the carries of the cell. The number at the top left corner is the serial

number of the coding.

would be useful for the rest of the report. Based on the values of the choice, it is observed
that Cs is zero (0) in the case that the winner is not defined yet and one (1) in the case
the winner is found. Thus, Cy can be renamed to found. Carry C; is zero (0) when "A
is the winner” and one (1) in the case that ”B is the winner”. Thus, C; indicates which

is the winner and it can be renamed to choose.

26

3.1.4 The Circuit

The second family has provided the proper coding for the 2-bit comparator cell. This
coding is applied to the cell; and the truth table for the inputs and the outputs is shown
in Table 3.4 . The latter is used for Boolean optimization with the assistance of Karnaugh
maps shown in Table 3.5 . Boolean equations are shown Figure 3.2 . It is often useful
from an implementation perspective to define choose; and found; as functions of some
intermediate signals gc; (generate choose;) and gf; (generate found;). If gc; = 1 choose;
will be generated else the previous value will be propagated. If gf; =1, the found; will

be generated, else the previous value will be propagated. The result m; is defined by

Inputs Outputs
The choice;y; | choose;yy | found; 11 | a;41 || bip1 || choose; | found; The choice;
0 0 0 0 0 0 A equals B
A equals B 0 0 0 1 0 1 A is the minor/B is the major
0 0 1 0 1 1 B is the minor/A is the major
0 0 1 1 0 0 A equals B
0 1 0 0 0 1
A is the minor/ 0 1 0 1 0 1 A is the minor/
B is the major 0 1 1 0 0 1 B is the major
0 1 1 1 0 1
1 0 0 0 X X
don’t care 1 1 0 1 x x don’t care
1 1 1 0 X X
1 0 1 1 X X
0 1 0 0 1 1
B is the minor/ 0 1 0 1 1 1 B is the minor/
A is the major 0 1 1 0 1 1 A is the major
0 1 1 1 1 1

Table 3.4: The truth table of inputs/outputs based on the coding that is used for the carries of the cell.

equations according to the functionality of the cell (minimum or maximum finding). The
polarity of choose; can be used, the equation stands for the finding of either minimum or
maximum. Notice that gc; and gf; are only functions of a; and b; and do not depend on the
carries. The circuits for the implementation of cell;, which are based on the optimized

Boolean equations, are shown in Figure 3.3 .

27

choose; found;
00 | 01 | 11 | 10 00 | 01 | 11 | 10
00 0 0 0 1 00 0 1 0 1
01 0 0 0 0 01 1 1 1 1
11 1 1 1 1 11 1 1 1 1
10 X X X X 10 X X X X

Table 3.5: The Karnaugh maps for the carries of the choice.

AND-OR AND-OR-INVERT
choose; = choose; 1 + found;; - gc; choose; = (choose;, 1 - found;;; + gc;)
found; = found;; + gf; found; = (found;;; + gf;)
Where gc; = a; - b; and gf; = a; ® by Where g¢; = a@; + b; and gf; = (a; ® by)
RESULT

m; = choose; - b; + choose; - a; Seek the minor

m; = choose; - b; + choose; - a; Seek the major

Figure 3.2: The Boolean equations for the carries and the result.

The number of gates used for cell; is 8 for AND-OR and 9 for AND-OR-INVERT
including the multiplexer that evaluates m;. The delay from found;,; to found; is one
gate-level. The AND-OR implementation of cell; is hiding more than one level of logic
per gate. OR and AND gates are iimplementes by NOR and NAND gates with inverters
in front. Thus, each of them has two gate-level delay. Reduction to this delay can be
achieved by using inversion of the polarity of signals. Cell;;; is followed by cell; with
inverted signals in relevant to cell; ;. The result is a design consisting NANDs and NORs,
which has one gate-level delay per 2-bit comparator for choose; and found;. Figure 3.1.4

AND-OR AND-OR-INVERT

m m

choose ,y —— F/J_\ choose, choose 4&‘:} F/_R choose;

found
" D found; found,,; found;

a ., b;

Figure 3.3: a) The AND-OR implementation of the circuit. b) The AND-OR_INVERT implementation.

28

shows the mentioned optimization. The number of gates for each iimplementation of the

Invertion of Signals
Cell ; Cell |
m

m 1
’—Q/J_\ V/JK choose ;

choose | choose

choose ;,;

found ;

found ey

found
found ;

Figure 3.4: Inversion of signals for the cell;.

cell; is 7. The delay of found; is one gate-level. The same is for choose; for cascaded cells,

This will be proved in following sections. In addition, the fan-out and the fan-in of all

the gates in the cell is less or equal to 2.

29

3.2 The 2 Element Comparator

3.2.1 The Ripple Comparator

Usually the elements A and B have more than 1 bit. A k-bit comparator can be con-
structed by cascading k 2-bit comparator circuits in series, connecting the choice; 11 to
the circuit that calculates the choice;. This configuration is called ripple-carry compara-
tor since the carry bits "ripples” from one stage to the other.The initial value of carries
is 7 A equals B”. The delay through the circuit depends upon the number of logic stages
that must be traversed and is a function of the applied input signals. For some output
signals no rippling effect occurs at all (e.g. the MSBs), while for others the choice has to
ripple all the way from the MSB to the LSB. The propagation delay of such a structure
(also called the critical path) is defined as the worst-case delay over all possible input

patterns. In Figure 3.2.1 a 4-bit ripple carry comparator is shown.

T mrz mrl RO
choose4 JE— L choose0
Cell 3 Cell 2 Cell 1 Cell 0
found4 — — found0
as b3 ap by a; by ag bo

Figure 3.5: Four-bit ripple-carry comparator: topology

In the case of ripple-carry comparator, the worst-case delay happens when the input
MSB cell carries are propagated all the way to the LSB. Thus, the delay is proportional
to the number of bits in the input words (k) and is approximated by

teomparator A% tg + K - carries + tmux
where t, is the delay for the gc and gf signals to be evaluated, t.qrries is the delay for

the carries to be propagated through one cell and t,,,, is the delay for the mg signal to

be stabilised. The dominant factor in equation is k - t.qries Of carries.

The delay of the 2-element comparator circuit can be reduced by using the inverted
signal cells which decrease the delay of the choose carry. Figure 3.6 shows the circuit
for k = 4. The enhancement comes from the fact that the cells are cascaded. At the cell

that compares the MSBs found, has 2 gate-levels delay

in contrast to chooses, which suffers from 3-gate-levels delay. This is only true for

30

b, a, a; b, b, a, ay b,

Figure 3.6: Four-bit ripple-carry comparator: circuit implementation with inverse signals

the first cell. At the next significane cell, the output of the gate that accepts as inputs
the previous found, and the current gcs, is ready simultaneously with the output of the
gate that produces choose, of the previous cell. Thus, chooses suffers only of 1 gate-level
delay. This is the case for both carries until the end of calculation. The overall delay is
approximately 1 gate-level/cell, for each carry.

tcomparau‘cor = tg + (k + 1)) tcarry * tmux

The propagation delay of the ripple-carry comparator is linearly proportional to num-
ber of bits. This property becomes increasingly important when designing comparators
for wide datapaths. When designing ripple-carry 2-element comparator, it is far more im-
portant to optimize k - tegrries than tp,, (or ty) since the latter has only minor influence

on the total value of tcomparator-

3.2.2 The Square Root Carry Select Comparator

In ripple-carry comparator, every 2-bit comparator cell has to wait for the incoming car-
ries before an outgoing carry can be generated. One way to get around this linear depen-
dency is to use the idea of carry select adders [Rab96]. The nature of addition operation
enforces the carry to be propagate from the LSB to the MSB. We adapted the idea of
carry select to the comparison operation where the carries are propagated form the MSBs
to the LSBs. The carry select comparators prepare the carries, as the elements were equal.
Once the real value of the incoming carry is known, the correct result is selected with a

simple carry select cell (cs-cell).

Consider a chain of four 2-bit comparator blocks, calculating bits i+3 to i. Instead
of waiting for the arrival of the choice;14, the comparison starts, as if all the previous
bits {k-1,- - -i+4} were equal. When the choice; 4 finally settles, either this or the choice;

31

is selected. The selection is done according to the value of the choice;;4. If the latter

indicates the winner,

result generation

the choice the choice
i+ i

4 — 5l carry select cells

BequalsA __gl ripple cells

Figure 3.7: Four-bit carry select comparator: topology.

carries are discarded. Otherwise, the incoming carries are discarded. The situation
reveals a short of priority, based on the invariant condition of the 2-element comparator.
Figure 3.7 shows the case described. The cs-cell (carry select cell) is responsible for the
proper selection of carries. The functionality is defined by Figure 3.8 , where the priority

property of the cs-cell is shown.

choose found _ the choiceprey | the choicecyrr | the choicese
sel sel
T T A equals B A equals B A equals B
choose prev ——t

c-s cell ; A equals B A is the minor/ A is the minor

found —
prev B is the major B is the major
T T A is the minor/ X A is the major/
choose ¢ found ., B is the major B is the minor

Figure 3.8: The cs-cell and the table recording the functionality.

The truth table is shown in Table 3.6 . Based on that, optimization with Karnaugh

maps is performed and the Boolean equations are shown in Figure 3.9 .

AND-OR AND-OR-INVERT
choosegel = chooseprey + foundprey - ch00s€cyrr choosesel = (chooseprey - foundprey + choosecyrr)
foundse) = foundpyey + foundeyrr foundse; = (foundpyey + foundey,r)

Figure 3.9: The Boolean equations for the carries.

Similarity of cs-cell’s equations with those of the 2-bit comparator cell is observed, as

shown in Figure 3.10 .

32

Inputs Outputs
chooseprey | foundpre, | choosecyrr | foundeyrr || choosege | found,
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 b'q b'q
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 X b4
0 1 1 1 0 1
1 0 0 0 b'q X
1 0 0 1 b'd b'd
1 0 1 0 X X
1 0 1 1 X b'd
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 X X
1 1 1 1 1 1

Table 3.6: The truth table of inputs/outputs of the carry select cell.

Finally, the inversion property is used in order to achieve lower delay propagation of
the signals. Although only the choose, is used for the generation of the M, the founds
must be generated too, to be used by the next significance cs-cell. Cascaded cs-cells result
to one gate delay for both of the carries.If choose.,,, is ready early the choosey results

to one gate delay. The critical path is that of choosese (Figure 3.10).

Consider a case of 20-bit 2-element carry-select comparator constructed by cascaded
4-bit carry select modules. As mentioned earlier the propagation delay of every cell is
1/gate-level /bit. The worst-case arrival times of the signals with respect to the time the
input is applied at the different network nodes are marked and annotated in Figure 3.11
(top). This analysis demonstrates that the critical path of the comparator ripples through
the cs-cells network of the subsequent stages. From inspection of the circuit, a first-order
model of the worst-case propagation delay of the module can be derived.

tcomparator = tg + (k)) JDcaurry + (%) . tcs—cell + tmux

Where k and K represent the total number of bits, and the number of bits per stage,

33

choose,,; found,,;
00 | 01 | 11 | 10 00 | 01 | 11 | 10
00 0 0 1 X 00 0 1 1 X
01 0 0 0 X 01 1 1 1 X
11 1 1 1 X 11 1 1 1 b'q
10 X X X X 10 X X X X

Table 3.7: The Karnaugh maps for the carries of the choice.

respectively. The carry delay through a single 4-bit module is proportional to the length

of that stage, or equals k*teqrry

AND-OR AND-OR-INVERT
choose previD, choose,, choose ., 4%‘:} choose
found e, found .y,
” found e, foundgg
choose ¢ found ¢,
choose,, found .,

Invertion of Signals

cs-cell cs-cell
choose .o, choose , choose choose g

found e,

found sl found orev found

choose found
curr curr choose,, found

Figure 3.10: The cs-cell circuit. Inversion of signals is used to minimize the delay.

The propagation delay of the comparator is once again linearly proportional to k. The

reason for this linear behaviour is that the choice still has to ripple through all stages.

The next topology Figure 3.11 (bottom) illustrates a major improvement to the de-
lay of the comparator shown in Figure 3.11 (top). Investigating the linear carry select
comparator, one striking opportunity comes to light. Consider the cs-cells of the last com-
parator stage. The inputs to those cs-cells are the choice of the ripple cells of the current
block and the choice of the previous stage comparison cs-cells. A major mismatch between
the signal arrival times can be observed (delays are shown in parenthesis). The choice of
the current comparison block is stable long before the choice of the previous block ar-
rives. It makes sense to equalize the delay through both paths. This can be achieved
by progressively adding more bits to the subsequent stages in the 2-element comparator,
requiring more time for the generation of the carry signals. For instance, the first stage
can compare 2 bits, the second contains 3, the third has 4 and so forth, as demonstrated

in Figure 3.11 .The annotated arrival times show that this comparator topology is faster

34

than the linear organization. It can be observed that the discrepancy in arrival times at

the cs-cell nodes has been eliminated.

© (10) (1)

result generation result generation result generation

«

(@)
result generation result generation

8)
@)

© the choice the choice |, ®the choice ® the choice
the choice n carry select cells |——— | carry select cells carry select cells carry select cells the choice

©®) ®)) ©) ©)
ripple cells ripple cells r ripple cells ripple cells r ripple cells
Bits 11-8 Bits 7-4 Bits 3-0

Bits 19-16 Bits 15-12
B equals A s B equals A s B equals A B equals A B equals A

a) Linear configuration
© ™ ® ©

result generation ‘ result generation ‘ ‘ result generation

®)
result generation
“) ®)))
the choice T T T T the choice | T 1 T 1 T
carry select cells carry select cells

)
the choice
carry select cells
o @ Pt tote Pittte
r ripple cells r ripple cells ﬁ ripple cells r ripple cells r ripple cells
Bits 17-15 Bits 14-11 Bits 10-6 Bits 5-0

carry select cells

the choice
in

Bits 19-18
B equals A B equals A B equals A B equals A B equals A

b) Square root configuration

Figure 3.11: a) The linear comparator. b) The square root comparator.

In effect, the simple trick of making the comparator stages progressively longer results
in a structure with sublinear delay characteristics. This is illustrated by the following
analysis. Assume that an k-bit comparator contain P stages, and the first stage compares
K bits. An additional bit is added to each subsequent stage. The following relation then
holds:

k=K+K+1)+K+2)+...+(K+P-1)=
S

If K<k, the first term dominates and the above equation is simplified
k=2 =pP=v2k
Thus, the delay can be expressed as
tcomparator = t-Jg + K- tcarry + (2- k)) tcs—cell + t-Jmux

The delay is proportional to v/k for large comparators (K<k), or teomparator = O(Wk).

The square root carry select comparator circuit is susceptible to optimization, at a
closer look. The initial value of the choice usually is not provided and the carry select
cells of the initial bock are unnecessary. The carries to the next significance block are the
output of the last ripple cell of the initial block. The result generation block is taking
the carries directly from the ripple cells. Another issue is the linearly increasing fan-out
to the output of cs-cells as more blocks are added to the comparator chain. This is also
the case for carry select adders. The idea is to transfer the fan-out from the path that

announces the choice to the next significance block, to the path that produces the result.

35

The latter is not critical and can undertake the mentioned delay. The implementation of

these ideas is illustrated in Figure 3.12 .

result result result result result

o L7 T Tl

h-cs F h-cs (‘ h-cs (h-cs
! ! ! !

ripple ripple — ripple ripple ripple

Bits 15-14 Bits 13-12 Bits 11-9 Bits 8-5 Bits 4-0

Figure 3.12: The carry select comparator’s configuration after the critical path delay optimization.

The h-cs (stands for half carry select) blocks shown in Figure 3.12 are cs-blocks with-
out the gate that calculates the carry found. The latter is not needed for the evaluation of
the results. The fan-out of the carry select blocks residing on the critical path is constant
and equal to 2. For large values of k (k>64) the fan-out of the h-cs cells is significant. One
solution is to use a tree of buffers from the driving cell to the driven cells. This structure

has a logarithmic delay.

The equation for the delay now needs to be redefined. The following relation holds
k=K+K+K+1)+(K+2)+...+(K+P—-1)=

=K-P+1)+ 20U P L p. (K- 1)+K

Solving the above equation for P,

P2+ (2-K-1)-P+2-(K-k)=0

the following result occurs
P=

—(2:K—1)+4/(2:K—1)?+8-(k—K)2

Thus, the delay for the carry select comparator can be expressed as previously
tcomparator = tg + K- tcarry + P- tcs—cell + (logQP) : t‘mux

If K<k the result is the same as the pre-optimized configuration.

P=v2k

3.2.3 The Carry Look Ahead Comparator

When designing fast comparators, it is essential to get around the rippling effect of the

carries that is still present in carry select comparator. The carry look ahead principle

36

offers a possible way to do so. As stated before the following relation holds for each of
the carries
choose; = choose; ;1 + found;, - gc;

found; = found;; + gf;

Where gc; = a; - b; and gfi = a; ® b; The dependency between choose; and choose;,; can
be eliminated by expanding choose;. This is also the case for found;. For the first 2 bits
choosex_; = choosey + foundy - gen_1
foundy_; = foundy + gfn_1
choosey_y = choosey + foundy - (gen—1 + gfn—1 - gen—2)

fOllIldN_Q = fOllIldN + ng—l + ng_2

The general forms for the two carries are for the vth bit
choose, = choosey + foundy - (X}_x_; (IT1 1141 gfk) - gci)
found, = foundy + (32 _n_; gfi)

Observe that choosey = 0 and foundy = 0. Thus, the equations take the close form

choose, = ¥ n_ (TTitiy . 8fi) - goi
found, =Y\ y_; gf;

Those general forms can be used for the implementation of v-bit comparator. For
every bit, the carries are independent of the previous carry bits. The ripple effect has
been effectively eliminated, and therefore the comparison time should be independent
of the number of bits. This is not true, because of delay’s hidden dependencies on the
number of bits. The constant comparison time is wishful thinking and the delay is at least
linear with the number of bits. One problem arises from the large fan-out of the gates
that evaluate gf; and gc;. The delay of those gates increases, since the propagation delay
of a gate is proportional to its load. Another problem arises from the large fan-in of the
gates that evaluates the corresponding carries. Finally, the area of the implementation
grows progressively with k. Therefore the carry look ahead structure is only useful for

small values of k.

The resultant circuit can be further optimized. The value of the carry found is not
used for the calculation of the result, but only for that of choose. In addition, the circuit
is designed with NAND and XOR gates. The optimized circuit is shown in Figure 3.14 .

The fan-in of the NAND gates is linearly increased with k. This problem can be solved
by replacing a k-input AND gate with a binary tree of AND gates. The delay of this
structure is increased logarithmically with k. Another problem is the linearly increased

fan-out of the XOR and NOR gates, resulting a significant load to the driving gate. This

37

found ; choose; found, choose , found ; choose ; found choose

OO 6 oo

| 1l \”

|

of gc of gc of gc gf gc

Bit 3 Bit 2 Bit 1 Bit 0

Figure 3.13: The carry look ahead implementation of the 2 element comparator.

choose 5 choose, choose ; choose,
of gc of gc of gc gc
a b a b a b a b
Bit 3 Bit 2 Bit 1 Bit 0

Figure 3.14: The optimized carry look ahead implementation of the 2 element, comparator for k=4.

38

problem can be solved by using tree of buffers from the latter to the driving loads. This
can lead to logarithmically increased delay as function of k, which can be expressed as
teomparator = tg + 2 - (10g2k) - tgate + tmux
The above equation shows that the delay of the carry look ahead version of the 2-

element comparator is logarithmic function of k.

3.2.4 Conclusions for the 2 Element Comparator

The discussion of comparators is by no means complete. Due to its impact on the perfor-
mance of computational structures, the design of fast adder circuits has been the subject
of many publications. The optimizations introduced in those publications can be directly

used for the implementation of fast comparators.

2—element comparator

32 w w w w w w w w w ‘

—— Ripple L

——— Carry Look Ahead
Carry Select

Delay (a.u.)
=
(e}

0 16 32 48 64
Number of Bits k

Figure 3.15: The ripple, carry Look ahead and carry select delays for 2-element comparator.

A proper coding for the 2-bit comparator cell is introduced and optimized. Three
versions of a 2-element comparator are proposed here. Delay optimizations are proposed
and the performance of the circuits is enhanced. This is a good time to compare the delay
of the various versions of the 2-element comparator. This can be done easily by plotting
in the same figure the functions of the delays with the proper approximations. Setting

tescell = bgate = tmux = tg = tearry = 1
the equations for the delay are (K=2 for carry select)
tea = 2+ (logok) + 2
tes = V35T 1 logy(—3+ 8-k —7) +0.5

39

The plotted equations are shown in Figure 3.15 . Detailed examination of the carry
select circuit shows that it is faster than that of the carry look ahead for elements shorter
than 28bits.

3.3 The Binary Tree Comparator

The 2-element comparator circuit was designed in order to be the basic block of the binary
tree of comparators. The binary tree algorithm, the structure and the propagation of
the signals are described in Section 2.4.2 . In this section, the delay of the binary tree
of comparators is examined, using the 2-element comparators designed in the previous
section. The carry select comparator will be redesigned in order to match the delays of
the signals propagated in the binary tree. In contrary, there is nothing to be done with

the other topologies.

The delay of comparing N elements by using a binary tree structure is not independent
on the number of compared elements. The complexity of the algorithm as mentioned
earlier is logyN. The calculation for the minimum (or maximum) of an N-element set can
be executed by placing to every node one 2-element comparator.The advantage of this
topology is that if the compared elements are doubled the total delay will be inreased by
the delay of one 2-element comparator. In contrary to the delay the area of the circuit is

growing linearly with the number of elements. This is also the case for the power.

The property of parallelism is used and all the levels of the binary tree are performing
calculations in parallel. In order to take full advantage of this property and for the max-
imum utillization of the circuit, the arrivals of the signals must be equalized. The ripple
comparator is the configuration that by nature equalizes the delays of propagated signals.
This is due to the fact that the comparison operation for this topology is performed bit
by bit. The results are produced sequentially at every comparator in all levels. Figure
2.9 presented in Section 2.4.2 is the proof of the previous statements. The disadvantage

of this configuration is the linearly dependent delay of the 2-element comparator.

Investigating the 2-element comparator cell is necessary for the derivation of the delay
equation of the binary tree. The outputs of every cell; are not stable simultaneously. The
carries are ready earlier than the result because the latter uses one of the carries for its
calculation. In addition, the path along the 2-element for calculating the carries is 1/gate
delay per 2-bit comparison. In contrary, the path from the element bits to the result is 2-
gate delay. This is not a severe disadvantage in a binary structure configuration because

usually the longest path is the one along the 2-element comparator and not along the

40

levels of the tree (from the leaves to the root).

3.3.1 The Binary Three with Ripple Comparators.

A part of a binary tree with ripple configuration of the 2-element comparator is shown
in Figure 3.16 The elements compared by such a tree are N= 8, having each k = 4 bits.
Seven comparators must be used for the comparison of 8 elements. The tree has 3 levels
and each 2-element comparator uses 4 2-bit comparator cells. The first cell is different
from the others because the carries have taken their initial values. The last cell is also
different from the others because the final value of foundy is not needed. Choose indicates
the winner. The critical path of the calculation is highlighted. It is observed that at least
5 gates delay per level is introduced. This is the case until the signals reach the top level.
There the delay added is 1 gate per bit.

Level-3

Level-2

‘ ‘ Level-1

0]
T T I
\ N] Level-2
N e
DCA |

S S—

%%M D

Figure 3.16: Propagation delay for the three 2-element comparator structures in the binary tree.

Level-0

Assuming that all gates have the same delay equal to 1 (this is not always true but
it stands for our case due to the small fan-in and fan-out of every gate), an equation for
the delay of the binary tree can be derived.

tripple tree = K — 2+ 5 - logaN

41

In contrary to the delay the area of the circuit is growing linearly with the number of

elements. This is also the case for the power.

3.3.2 The Binary Three with Carry Select Comparators.

Another version of the binary tree comparator is designed with carry select topology for
the 2-element comparator. Equalizing the delays between 2-element comparators lying
at sequential levels of the tree is needed. Figure 3.17 shows the problem which occurs
when all the 2-elements comparator blocks are designed as shown in Figure 3.12 for all

the levels of the tree. The delay of the ripple block can be derived by Figure 3.16 .

result

E
=2
©

N

o

N

53

9 11 13
ripple ripple ‘ ripple ‘

ripple

Result from

the right child

NN w s

t
4 4 5 6 7
ripple ripple ‘ ripple ‘ ripple ‘ ripple

Bits 15-14 Bits 13-12 Bits 11-9 Bits 8-5 Bits 4-0

3
]

Figure 3.17: Propagation delays of the binary tree structure with carry select comparators.

This block is the same with the ripple comparator’s without the multiplexor part.
Thus, it is 4 gates for the first two bits and one gate delay for the following cs-cell chain.
The mux part is moved to the result block. At Level-0, the first cs-cell in the chain
introduces 2 gates delay in contrary to the others having only one. This is also the case
for the hs-cells. Finally, the delay of the muxes must be added. The effect of large fan-
out is significant only in the last parts of the comparator and for elements with many
bits. At Level-1, a different situation exists. The output carries of the first ripple part of

the 2-element comparator is ready before the carries of the second ripple part. Thus, the

42

evaluation of the first cs-cell block is delayed. The evaluation of the second cs-cell block in
the chain has to wait for the third ripple part of the carry select to finish the calculation.
Thus, the problem is the delay of propagating the choice along the 2-element comparator
through the chain of cs-cells, because the inputs to the ripple blocks are delayed.

The solution is to feed the ripple parts earlier, shown in Figure 3.18 . A 5-level
binary tree is designed with different 2-element comparators at each level of the tree.
Only one comparator per level is shown for simplicity. Level-0 is constructed with a 2-
element comparator as shown in Figure 3.12 . This is not the case with the rest of the
levels, where comparators are hybrid ripple and carry select. The percentage of ripple is
defined by a simple rule: Moving one level up means moving the last part of 2-element
comparator from carry select to ripple section of the comparator. This rule equalizes the
propagation delays of the different parts of the 2-element comparator at each level of the
tree. The equalization of the delays is necessary for the parallelism property to be valid
and the proper propagation of the choice along the 2-element comparator through the
cs-cells. Thus, careful partitioning of the bits of the resulting element to feed the next

level 2-element comparator is needed.

All the comparators are calculating in parallel in all the levels. The critical path of the
circuit has to be defined. The complexity will be derived by the known properties of the
binary tree and the carry select comparator. Beginning from the bottom level comparator,
the critical path is the one shown at Figure 3.12 . Thus, the choice’s signals have to
propagate along the 2-element comparator and the complexity is tcomparator = O(\/l;) for k-
bit elements. The rest of the delay is propagating the last part of the carry select bits from
the leaves to the root of the tree. The number of those bits is decreasing linearly passing
through the levels of the tree. The complexity of this topology is calculated as follows:
Assume [is the number of bits calculated by the last part of the 2-element comparator
that lies at the leaves. Then

l1=K+P-1
For all the comparators at the tree comparing N elements the sum S of those parts is
S=1-141—-2+4+.--1—logN =
S = log,N - 1 — e NoeNt)
S = logyN - [— a2l
Substituting /
S =logoN - [K + P — 1 — leslttl)

usually K=2
S = logyN - [P — le2l=d)

43

47 49 51
| [| [e |
49
h-cs
49
»
24 |25 |26 |27 |28 |29 |30 |31 |32 |33 |34 |35 |36 |37 38 (39 |40 |41 |42 |43 |44 |45 47
] 4 Right child bits
24
1 29
20 ® 38 2* 40 2 41 42
result ‘ ‘ result ‘ ‘ result ‘ ‘ result ‘
38 39 40
h-cs h-cs h-cs
38 39 ’7 40
19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32 |33 |34 |35 [36 |37 2% 37 2
ripple ‘ ripple ‘ ripple ‘ ripple
2 4 Right child bits
20 2 3
1 29
15 15 28 2* 20 3 - 4 32 33
| e] [| [ww | [e |
28 29 30 31
h-cs h-cs h-cs h-cs
30
28 29 31
cs cs : cs : cs
14 |15 [16 |17 [18 |10 |20 |21 |22 |23 |24 |25 |26 27J 25 27 28 29
ripple ‘ ‘ ripple ‘ ripple ‘ ripple ripple
! | : |
5 Right child bits
’ 15 1 2 1)(3 I
1 29
2
10 9 17 2 19 3 20 “ 21 5 22 6 23
result ‘ ‘ result ‘ ‘ result ‘ ‘ result ‘ ‘ result ‘ ‘ result
17 18 19 20 21
h-cs h-cs h-cs h-cs h-cs
17 ’7 18 19 20 21
cs cs cs cs cs
9 10 11 |12 [13 [14 |15 16 14 15 16 17 18
‘ ripple ‘ ripple ‘ ripple ‘ ripple ‘ ripple ripple
] WL‘ ’ Right child bits
9
2 2 2 4 4
[3] 29
2
2 5 2](8 3 9 10 5/~/ 1
‘ result ‘ ‘ result ‘ ‘ result ‘ ‘ result ‘ ‘ result ‘
6 7 8 9
h-cs h-cs h-cs h-cs
6 7 ’7 8 9
cs cs cs cs
4 4 5 6 7 8 9
‘ ripple ‘ ripple ‘ ripple ‘ ripple ‘ ripple ‘ ripple ‘ ripple
Bits 28-27 Bits 26-25 Bits 24-22 Bits 21-18 Bits 17-13 Bits 12-7

Figure 3.18:

mat

ched.

A 5-level binary tree with carry select comparators.

Bits 6-0

Only one comparator per level
is shown for simplicity. The hybrid comparators are shown. The delays(with blue) of the signals are

As shown in Section 3.2.2
P=v2-k=
and substituting at S
S = logoN - [V2 - k — g2l

Thus we conclude to an equation of S having only the number of elements N and the
number of bits per element k. This equation gives us the total complexity of the binary

tree
O(Vk) + O(logaN - [vk — logsN])
This relation is valid for

\/E > IOgQN)

The complexity of the hs-cells and the large fan-out is not taken in mind. This com-

plexity depends logarithmically on / and is discarded in this approximation.

The area of this scheme is increased compared with the one of binary tree with ripple

2-element comparators. This is also the case for the power.

3.3.3 The Binary Three with Carry Look Ahead Comparators.

The last version of the binary tree comparator is the one that uses carry look ahead topol-
ogy for the 2-element comparator block. Figure 3.19 is shows the mentioned topology.
The critical path of the tree is highlighted. This path includes the gates with the largest
fan-in and fan-out in the circuit. The property of parallelism is conserved in this topol-
ogy. This is the result of the linearly increasing fan-out of the gates. The solution to
large fan-in of the gates is to replace each one with a binary tree of 2 fan-in gates. Tis
results to O(logaN) delay. To deal with the large fan-in of the gates, a sequence of buffers

is used. The drive strength of those buffers is grsdually increased.

Figure 3.19 shows a circuit, where the 2-element comparators cannot be programmed.
A initial condition to the comparators cannon be applied. This is due to the fact that
the initial value of the choicey is replaced with A equals B”. Thus, the a 2-element
comparator could not start comparing with initial condition different than ” A equals B”.
In different case, a significant amount of large fan-in gates and wires should be added,
increasimg the dealy of the circuit. This is not the case with the 2 previously analyzed
topologies: 3-4 gates suffices, increasing slightly the overal delay. Programmability of the
2-element comparators is necessary for the proper function of the WRR scheduler, as will

be proved at next sections.

45

Figure 3.19: A 3-level binary tree with carry look ahead comparators.Only one comparator per level

is shown for simplicity.

46

Chapter 4

Design of the Scheduler

In previous sections, the WRR disciplines were introduced. Those raised the necessity of
a priority queue data structure. The latter is characterised by specific operations, which
must be supported by the scheduler. The operations are defined and analyzed at the
following sections. Afterwards, the datapath and the control will be designed step by
step.

4.1 Operations

The discussion of this section involves the operations to be performed by the scheduler The

basic operations for the dynamically change priority queue are insert delete and replace.

Delete operation is performed to ineligible flows that are scheduled to be served in
the future and make the transition eligible = ineligible. This situation is common in the
scheduler and appears for several reasons (last packet of the flow is served, backpressure
signals, bank interleaving). The NST of this flow must not participate to the competition

for the minimum.

Insert operation is performed, when the flow becomes from inactive state to active
one. This is the result of a new packet arrival in an empty queue and all the reasons
mentioned for delete. In order to be consistent with the WRR disciplines, the new flow
must be inserted to the current ”time” (NSTjcurrent ”time”), or the NST defined (NST;,
current "time”). If multiple flows become active simultaneously, all of them will be served

at current "time”, using RR.

Replace operation is performed when a flow packet is served, and it is not the only

one from the same flow waiting for service. The updated NST must participate to the

47

competition for the winner, so it has to replace the previous one in schedule.

4.2 Tasks and Interface

In addition to the operations performed to manage the priority queue, there are some
features, the scheduler must have for the proper operation. Those tasks are independent
from the basic operations mentioned earlier. They include information for the activity
of the flows, stopping the scheduler, adding the FSI to the NST of the flow and others

analyzed in the next paragraphs.

In order to define the status of the flows, the usage of ready bits is necessary. Every
ready bit corresponds to a flow showing its eligibility. Those are inputs to the scheduler
and at every iteration. The queue manager, who inserts and deletes packets from the

queue of each flow and receives flow control signals, provides the ready bits.

WRR disciplines define the current ”time”. This definition separates the NST's in two
divisions: those greater and those smaller than current time. In every iteration those
divisions have to be updated. This will help the scheduler to reinsert ineligible flows,
which become eligible. The flows of the first division (NST;<current ”time”) NSTs are
reinserted in the schedule at current ”time”. In contrary, the others remain to the (NST;>

current "time”) NST, at which they are scheduled to be served.

Every flow has its P-bit FSI, which is inverse proportional to the weight of that flow.
This number must be provided to the scheduler, every time a new request for connection
is granted. It is stored to an SRAM, which is accessed at every cycle. Flows are indexed
with 7, i€ [0,N-1]. This index is used as address internally to the scheduler and as address
input to the SRAM block. The FSI for a new connection and the index i are inputs to
the scheduler.

The decision of the scheduler for the flow to be served is not always granted by the
queue manager. This is usually due to limited link capacitance or latency problems in-
troduced in memory interface etc. The scheduler must know if the flow is really served
in order to provide the service according to the weight of the flow. If this information is
not provided, the NST of the flow will be updated and the latter will receive less band-
width and more latency. Thus, a signal which carrying the information about the action

performed on the flow from the queue manager is input to the scheduler.

Some times scheduler has to stop working, for power saving. Thus, a signal indicating

this situation is provided to the scheduler, and the latter stops all the internal tasks. This

48

signal is input to the scheduler.

In every iteration scheduler should output a number, which is the index of the chosen
flow. Also, it must indicate if this signal is valid or not. The latter is output from the

scheduler.

4.3 Element Representation and Wrap-around

In Section 2.4 , an assumption was made about the representation of the numbers in the
scheduler. The choice taken in favour of unsigned integers against floating point is based
on two parameters: the hardware simplicity and the precision wanted. The first parameter
deals with the amount of hardware wanted for the addition of floating point numbers,
which includes adder, incrementor and barrel shifters, for aligning and normalizing the
mantissa. In addition, the result occurs in more than one cycle. In contrary to those,
unsigned addition needs only one fast adder, which is translated in less delay, area and
power consumption. Furthermore, the implementation of WRR disciplines does not need
the precision of floating point numbers. It works well enough for unsigned integers, with

not so many bits (15 - 25 in this work).

There exist a problem emerging, which is associated with the numeric values of the
elements participating at the contest. A scheduler may need to increase the NST of the
flow in order to reinsert in different position in the priority queue. This may be repeated
arbitrarily large number of times before the element is requested to leave the queue. The
values of the elements increase monotonically, eventually leading to a saturation of the
number field of the element, no matter how many bits wide it is. Sooner or later wrap-
around will occur. Assume a k-bit number, reaching its maximum value 2¥-1. A consec-
utive increment will bring it back to the beginning, starting from ”00”. However, such
a number should continue to be considered greater than another close to the maximum
value 2*-1, according to the service schedule. A normal comparison will make a mistake

in this case. The solution is shown in Figure 4.1 .

The space of allowed element values is segmented in four subplanes, according to the
encoding to the two MSBs of the elements. Each color defines a rage of numbers, at which
the corresponding condition is valid. In order to compare without mistakes, all numbers
should have the same color. To achieve this, for k-bit elements, the FSI added should not
be larger than k-2 bits. Increment is always performed on the minimum value element,
thus the range of the values of the elements is bounded at most in two subplanes. Assume,

all the numbers begin from ”00”. Thus their color is green. In certain time some numbers

49

10>01

11>10

Figure 4.1: Managing wrap around. The elements values can be only one color.

will be at ”01” subplain, while others will be at ”00”. As soon as the last element value
passes from 700" to 701", the color of the set becomes black. As a result, the two first

bits of a 2-element comparator works different than the rest.

At the previous paragraphs, the interface of the scheduler is described and the tasks
that it must perform are defined. Scheduler’s block is shown if Figure 4.2 . In the next

section, pipelining is introduced before building the datapath and the control block.

log N

———“— address

=]

ﬁ;» flow_service_interval

N

ﬁ;, ready_bits N-flow winner

WRR Scheduler

log N

stop
flow_not_served serve

new_flow

clock reset_n

Figure 4.2: The top block of the N-flow WRR. scheduler.

a0

4.4 Pipelining

After the previous tasks were defined, a chance of pipelining the scheduler rises. To
achieve a high task throughput for the scheduler, new iterations should issued and start
executing before a previous one has completed. To achieve such parallelism, each itera-
tion already issued, should overlap with the already existing one. The best way to do this
is to separate the "updating” of already found NST and the finding of a new NST. Thus,
a 2-stage pipelining can be introduced. As long as the binary tree of comparators tries
to locate the minimum among N elements, access to SRAM can be issued and the addi-
tion of the FSI of the flow to the current ”"time”, can be performed. This optimization

introduces a couple of issues to deal with.

Cycle 1 Cycle 2 Cycle 3
WB & Search ! Update ! !	
; ; ;	
l WB & Search	Update
Forward previous minimum Forward current minimum
to reinsert "old" flows to compare with the updated one

Figure 4.3: Forwards in the pipeline.

The first one concerns the value of the updated winners element, which must partici-
pate to the new competition. Referring to Figure 4.3 this value is generated at cycle-1.
At cycle-2, this value is not yet updated, while simultaneously, a new iteration is issued.
The winner, generated at cycle-1 and not yet updated, is removed from the contest. As
soon as the competition at cycle-2 finishes the current winner is forwarded to the ”up-
date” section, in order to be compared to the updated previous winner. With this trick,
the updated value of the previous winner is reinserted in the contest. The forwarding
of the winner element to the update section solves another problem. This concerns the
situation that the flow_not_served signal is raised. This means that the previous winner
is not served. Thus, it must reinserted into the schedule. This is done by forwarding the

current winner and compare with the non-updated version of the previous winner.

o1

The second concerns the reinsertion to the schedule of old flows. The Old flows are
ineligibles, with NST's smaller than the current ”time”. The reinsertion is performed at
always at current ”time”. Thus, the latter becomes the NST of those flows, and partic-
ipates to the competition. So, forwarding the winner from the previous competition to

that just started, is necessary.

Another, point for discussion is updating of SRAM with a new FSI. Keep in mind that
SRAM is busy at every cycle, providing the FSI for the winner element. A single-port
SRAM is used because the writes are significantly less than reads. A write occurs every
time a new connection is established, for the new FSI. The number of packets served
by a switch is larger than the number of connections. Because of that reads are more
than writes. A structural hazard occurs on updating the contents of the SRAM. Thus,

updating the winners F'SI has to be done again and the pipeline is stalled for one cycle.

In this section pipelining is discussed and the problems with data and structural haz-

ards solved. The next section deals with the building of the data path.

4.5 Building the Datapath

Previous discussion has prepared the introduction of the datapath. Figure 4.4 shows the
basic blocks and it will be the next to discuss. The presentation of the datapath begins
with blocks performing simple operations, in order to understand clearly the functionality
of the circuit. As a guideline to the design of the datapath, the following statements are
followed. Stage-1 of the pipeline is the most time-consuming, because of the binary tree
of comparators block. Thus the main concern is to remove tasks from stage-1 and put

them in stage-2.

The description starts with the first pipelining stage. The most significant block is
the N-1 2-element comparators Binary Tree. This block accepts N elements at the inputs
and calculates the minimum of that element as shown in the previous chapter. Those

elements are stored in N registers.

Another important block is the Locate the address of the minimum. The name of
the block explains its functionality. As inputs accepts (N-1)-bit the_choice_bits, which
are the final choice of every 2-element comparator in the tree. The output of this block
is the logsN-bit winner_address. A detailed diagram is shown in Figure 4.5 . A simple
observation of the diagram shows the idea behind the implementation of this block. Every

father node, knows which child won the contest, by just reading the last value of the carry

52

‘‘‘‘‘‘‘‘‘‘‘‘

aaaaaaa

Figure 4.4: The datapath of the WWR scheduler: a first approach.

choosey.

In Figure 4.5 , this value is written in the boxes. Every box is a node and represents
a 2-element comparator. If the indexing of the flows is done the way Figure 4.5 shows,
then by reading the values in the boxes, the address of the winner element can be located.
Reading begins from the root and ends to the leaves. The path followed, is the same with
that of the winner element. The implementation of this idea can be done by using trees
of multiplezers. One tree is dedicated to one address bit . For N elements the number of
trees is logoN - 2. In order to calculate the iy bit (0 bit is the LSB bit), a binary tree
of multiplexers with depth logs(N - 1 - 7) is needed. Thus, for N elements the number of

multoplexors needed is

S=(2' 1)+ (22— 1)+ ... 2N~ o
S=2'4+224...20e2N"1 _ (]og,N — 1) =
S=2042 422 ... 2le2N"1 _ 50N =

S = 2leN _ 1 _Jog,N =
S = 282N — (log,N + 1)

The propagation of signals to all the tree of muxltiplexers is following that of com-
parators. The colors of the select signals at each multiplexer in Figure 4.5 pinpoint the
arrival of signals. The fan-out of choosey increases linearly from the leaves to the root for

the comparators tree. This is a disadvantage of the circuit, but it will be solved later.

23

0 choose left child
1 choose right child

Level-4

Level-3

Level-2

Level-1

] |
e

54 12 73 18 15 28 40 32 8 19 14 80 10 16 64 10

‘ 0000 ‘ 0001 ‘ ‘ 0010 ‘ 0011 ‘ ‘ 0100 ‘ 0101 ‘ ‘ 0110 ‘ 0111 ‘ ‘1000 ‘ 1001 ‘ ‘ 1010 ‘ 1011 ‘ ‘ 1100 ‘ 1101 ‘ ‘ 1110 ‘ 1111 ‘

Figure 4.5: An example of locating the address of the winner element.

The output from Locate the addressof the minimum block is stored in a register, in order
to be used for addressing the SRAM, at the next pipeline stage. In addition, it feeds the
Decode winners address. The output from this block is stored in a register and it will be

used at the next clock cycle.

The next block of Figure 4.4 discussed is the N 2-element comparators. This block
contains comparators used for the detection of flows with NSTs smaller than current time.
Every comparator accepts as inputs one of the N elements and the minimum from the
root of the tree. In addition, the decoded_address register feeds this block. The purpose of
this is simple. The flow served at the previous cycle updates its NST at the stage 2 of the
pipeline. But the non-updated NST is still at the register. A comparison performed with
the winner, probably will find this flow left behind in time and probably eligible. The
next step is to put this flow at current ”time” and serve it again, which is unacceptable.
The output of the block is old_flags (one bit per flow), indicating which flow is left behind
in time. The comparators of this block are the same with the one shown in Figure 3.7

without the "result” part.

The last block at stage 1 of the pipeline is the In/Out from schedule. This is responsible
for the insertions and extractions of flows in schedule. It performs simple but significant
tasks. Inputs to that block are the decoded_address and the old_flags calculated in the

o4

previous cycle, among with the ready_bits. The latter shows which flows are active. The
outputs of this block are the out_flags. All inputs and outputs are N-bits wide. The
calculations performed in this block are the same for every bit. The out_flag for a flow
is asserted if it is "not ready” or if it was served in the previous cycle. Thus, 3 states
occur for one flow: i) do not participate at all to the contest, ii) participate with its NST
(NST ; current ”time” and iii) participate with the current ”time” as NST (NST j current

"time”). Table 4.1 shows the states that may occur for a flow i in the scheduler.

state; decode_address; | old flag; | ready_bits; || out_flag; | choose_min;
Ineligible NST>current_time 0 0 0 1 0
Eligible NST>current_time 0 0 1 0 0
Ineligible NST <current_time 0 1 0 1 0
Eligible Reinsert at current time 0 1 1 0 1
Last in queue packet served 1 0 0 1 0
Served and reinserted 1 0 1 1 0
X 1 1 0 X x
X 1 1 1 X b'q

Table 4.1: The possible states for a flow in the scheduler.

The equations for the out_flag is
out_flag; = ready; + decode_address;

The use of out_flag needs a little explanation. A pair of those signals is input to the
2-element comparators at the leaves. Keep in mind that the 2-element comparators have
two carries with input condition ” A equals B”(Table 3.3). Assume two flows i, j at the
inputs of the same k-bit 2-element comparator. Thus, the out_flag signals change this

condition according their values, as shown in Table 4.2 .

out_flag; | outflag; | choose;_; | foundy_;
i-in, j-in 0 0 0 0
i-in, j-out 0 1 0 1
i-out, j-in 1 0 1 0
i-out, j-out 1 1 0 0

Table 4.2: Apply the out_flag to the initial condidtion of the 2-element comparator.

The equations for the two signals are

chooser_1 = out_flag; + out_flag;

95

foundyx_; = out_flag; + out_flag;

The out_flag signal is propagated from the leaves to the root, accompanying the ele-
ment value. Any parent 2-element comparator accepts those flags from its childs. Even-
tually, the path towards the root, for elements with asserted out_flags, is short. In the

common case they stop not far from the leaves.

The last block discussed from stage-1 is the still ready. This block guards the eligibility
of the updated NST, which is compared with the new winner element. Assume a flow with
small FSI and one the last packet in the queue and next to be served. After updating the
NST at stage-2 it will be compared with the new winner element in order to reinsert in
schedule. But according to the ready_bits arrived at stage-1 this flow must not participate
to the contest, since its last packet was served. This information is not available to the
comparator at stage-2, which choose wrong the flow with no packets (and small FSI) to
be served again. The inputs of the block are the ready_bits and the decode_address bits.
Those are used for bit mask to the ready_bits to isolate the corresponding bit of the flow.
After that a tree of OR gates is used, in order to confirm or not the existence of one 1.
The output of this block is the still_ready flag. This operates to the initial condition of

the 2-element comparator analogous to the out_flags.

The main block of stage-2 is SRAM. 1t is accessed at every cycle and gives results to the
Adder block. This single-port SRAM has a single address port and separate data input
and data output ports. Read and write cycles are timed with respect to a single edge of the
clock. During both read and write cycles, the write enable (WEN) and cell enable (CEN)
inputs are sampled by the rising edge of the clock. The data out bus has an asynchronous
3-state output enable control (OEN). A multiplexer at the input of the memory selects
the address according to the operation the scheduler performs. The writes in the SRAM,
which occurs every time a new connection is established, is a two-cycle operation for the
interface. Initially the new_flow, new_flow_address and new_FSI signals are latched by
corresponding registers. Thus the output of the multiplexer (at the memory input) is
prepared and latched at the positive edge of the next cycle. Thus, consecutive writes to
the memory are permitted. During write operation, although the previous winner’s NST
is not updated, the multiplexer which calculates winner, outputs a result. The latter is
not valid, so the signal serve has to be deasserted. In addition, at the next cycle there is
nothing to load to the NST registers. After write completes, scheduler’s output winner

is valid at the next cycle.

Adder block is used to update the NST of the served flow. The output of the adder

is used to perform write back to the NST registers for the served flow. In addition, it

26

feeds a 2-element comparator block. The other input of the latter is the current mini-
mum element. Thus, reinsertion of the updated NST is performed by this block which
compares the current minimum with the previous one updated. The output of the 2-
element comparator is a select signal to a multiplexer, which outputs the index of the
winner flow. What happens if the updated NST is smaller than the new minimum of the
remained flows? There are 2 solutions: i) put a multiplexer at the input of the minimum
register to select between the new minimum and the previous updated minimum, with
select signal the choose_flow and ii) store the new NST and the choose_flow in registers in
order to be used in the next cycle, and put a multiplexer at the output of the minimum
register to with select signal the stored choose_flow. The solution chosen is the second.
Although the first solution takes advantage over the second in area and power, loses in

delay. Instead, the solution followed removes delay from the stage-1 to the stage-2.

At this section, the main operations of the datapath analyzed. A first approach to
the WWR disciplines implementation is introduced. In the next section more features

are added to the design and solutions to a couple of arrised problems are proposed.

4.6 Adding more Features

The datapath presented in the previous section, does not complete the design of the sched-
uler. The flow_not_served and stop signals must be added to the design. The updated
datapath is shown in Figure 4.6

The chosen flow to be served from the scheduler is not always served by the switch.
Scheduler uses flow_not_served signal as input to make appropriate operations. The first
one is not to load the updated NST of the "not served” flow. The second is to reinsert
this flow into the schedule with the previous NST (not the updated) by comparing with
the new minimum. Thus, a new 2-element comparator block is added to datapath of
Figure 4.4 . A multiplexer selects the between the two output signals of the 2-element
comparators. This signal arrives near the end of the cycle period, because the queue

manager wants time to perform some operations before desiding to evaluate.

The stop signal is used to stop the scheduler from performing any operations. This
is used to minimize the power consumption of the circuit. This is mainly achieved by
stopping the operation of the tree. It prevents from writing back the NST and loading

new ready_bits.

o7

Figure 4.6: The datapath of the WWR scheduler

o8

4.7 Optimizations for Fan-out

After designing the datapath some observations should be done in terms of delay, area

and power. The critical path of the circuit must be detetermined and optimized.

As mentioned earlier the cycle period is determined by stage-1. The critical path
passes through the binary tree of comparators and througn the comparators at stage-
2 and finishing at output multiplexer. The most time-consuming block is the binary tree.
However, significant delay is introduced by the N multiplexers which are drived by the
previous-minimum signal, due to large fan-out(1 to N). In addition, large fan-out (1 tp
N) is introduced at the root of the tree. Minimum is driving the N comparators in order
to find which flows are left back in time. The proposed solution deals with the binary
tree. The idea is to increase the number of root 2-element comparators by inversing the
tree. However, this must be done carefully, in order to get significant improvement in
delay. This is a trade-off between area, power and delay. An invariant condition must

be satisfied for any block in the structure:

The fan-out of any block in the tree must be less or equal to 2.

Lovel-4 A O O O O P ﬁ

vt %Qﬁﬁgﬁgg

= A8 95, R A

Figure 4.7: An example of reducing the fanout of the root. 2-element comparators from Level-1 to

Level-3 have fan-out 2.

The implementation is shown in Figure 4.7 . The black blocks are the boxes of the
binary tree while the colored are those added. The construction of this architecture is
done, following a sequence of steps indicated by the color of the blocks. Initially, the
red box is added nearby the root. Thus, the fan-out of the root 2-element comparators is
reduced to N/2 and the fan-out of their children is increased to 2. Thereafter, the 2 green
blocks are added, initially to Level-3. In order to benefit from the invariant condition, 4
green blocks are added to Level-4. Thus, the blocks at Level-2 and Level-3 have fan-out

2. The root blocks have fan-out N/4. In the same way the blue blocks are inserted in

29

the architecture. The fan-out of the root blocks is N/8. The extra area added and the
fan-out of the root block are given by the formulas
area = Y 28N . oi-1
fanout = K/2!
where logsN is the height of the tree and K the fan-out of the root element. Index ¢ is
"running” from the root to the leaves(e.g. i=1 is the root-level, i=2 is next level below
the root).

Inserting such a tree in the scheduler yelds some interesting opportunities for decreas-
ing the fan-outs of the multiplexers. By increasing the number of registers storing the min-
imum and the multiplexers in front of them, the number of identical previous_minimum
is increased. Thus, the fan-out if this signal is decreased. Further more, by increasing
the number of previous_minimum signals, the number of adders can be increased. Thus,
the number of identical new_NST signals is increased. Thus, the fan-out of this signal is
decreased. However, increasing the number adders costs an increase to the fan-out of the
memory. This fan-out does not affect the cycle period, because it is not in the critical
path. On the other hand, the designer should be very careful not to overload any signal

and finally actually decrease the performance.

4.8 Economizing on Power

Another observation that uncovers one advantage of the circuit, deals with the power
consumption. The latter was the main disadvantage of the binary tree of comparators
because of the recalculation of the minimum from the begining at every iteration. Despite
this fact, keep in mind that the cycle period is few ns. This deals with the reinserions of
new elements to the contest. Assume a 4-level binary tree. A possible input configuration

is shown in Figure 4.8 .

The winner’s value stored in the register at the leaves is updated with the new NST =
16. This will activate only the 2-element comparators, which are on the path followed by
the previous value 8. Any other comparator will remain inactive! Thus, for every rein-
sertion only logoN comparators will calculate. This is the common case for the scheduler.
However, multiple insertions may occur by inserting ”old flows” in the schedule at the
same cycle. This will activate more than logoN comparators for one cycle. Anyway, the
mean value of active comparators is near logoN. This is not the case for the 2-element
comparators calculating the old_flags. All of them are active every time the minimum

changes. Thus this is the most power-consuming block of the datapath.

60

Level-4

Level-3

Level-2

Level-1

Level-4

Level-3

Level-2

Level-1

Reinsert with NST = 16

Figure 4.8: The power consumption after updating one element. The active 2-element comparators

at this cycle are highlighted.
4.9 Conclusions on Datapath Design

The WWR disciplines define certain requirements for a scheduler. Priority queue data
structure together with per-flow queueing can implement those requirements. The de-
signed datapath performs the proper operations to the priority queue elements and sched-
uler produce one valid output per cycle. Problems ocurred with large fan-out were faced
satisfyingly decreasing the cycle period. Furthermore, the power consumption of the bi-
nary tree is proofed to be less than estimated initially. At the next section the design

flow is analysed and synthesis results are presented.

61

Chapter 5
Design Flow

The design flow of a circuit plays significant role to the final performance. Many design
flows are proposed for verification and synthesis. The one used here contains several steps
for power and delay optimization. Figure 5.1 shows the design flow used for this circuit.
The design of the circuit is segmented in two parts. Initially the choices of binary tree of
comparators are investigated. Afterwards the scheduler is synthesised with fixed param-
eters N-number of flows and k-number of bits per element. This design flow is used for
both parts.

The pattern generator concerns only the scheduler. The C code for the binary tree
comparator is very simple. In addition, it creates the number of elements for input to
the verilog code. Those elements are written to file that the verilog code uses as input.
In contrast to that, the test vectors for the scheduler are more sophisticated, in order to
examine the most of the cases that may occur. A describes the pattern generator and the

interface to the verilog and C code.

The synthesis block in the previous figure hides enough information. This is shown in
Figure 5.1 . The synthesis flow followed is using gate level simulation for capturing the
switching activity of the nodes. This helps the synthesis tool to perform more accurate

power consumption calculations.

In the bottom-up strategy used, individual subdesigns are constrained and compiled
separately. After successful compilation, the designs are assigned the dont_touch attribute
to prevent further changes to them during subsequent compile phases. Then the compiled
subdesigns are assembled to compose the designs of the next higher level of the hierarchy,
and these designs are compiled. This compilation process is continued up through the

hierarchy until the top-level design is synthesized. This method permits to compile large

62

Pattern Generator

o

””7””; /\ ¢

{ C code] Verilog code

[— ----1 compare outputs
Not the Same

Same

Synthesis
Constrains met
No

Yes ¢—

Post Synthesis

Read Design &
Set timing
constraints

Compile &
Export netlist

Gate level simulation
Capture Switc. Activity
Annotate Switc. Activity|
Set power constraints

Compile &
Export netlist

il 1

i

Verilog code

Compare outputs

Not the Same

Same

The End

Figure 5.1: The general design flow followed

designs because Design Compiler does not need to load all the uncompiled subdesigns

into memory at the same time.

5.1 Technology used for Synthesis

The CAD tools used for verification and synthesis were Cadence Verilog-XL and the Syn-
opsys tools. The technology and library used for implementing the design were provided
via Europractice by Virtual Silicon Technology, Inc. (http://www.virtual-silicon.com):
umcl18u250t2 library, for 0.18um CMOS technology.

5.2 Binary Tree of Comparators

The binary tree of comparators, as shown in Section 3 , can be designed in three ways,
according to the implementation of the 2-elements comparator: ripple, carry select and
carry look ahead. The parameters for these designs were the number of elements (N:
Ne{2, 4, 16, 64, 256}) and the number of bits per element (k: ke{8, 16, 24}). The delay

constraints initially set for the tree was 10ns.

63

Initially, the 2-bit comparator cell was synthesised. Afterwards, the 2-element com-
parator, which uses the synthesised 2-bit comparator cell was mapped to gates. At this
level is necessary to start using the Power Compiler for the power optimization of the 2-
element comparator. This interference at early stages of synthesis produces better results

than late ones.

5.2.1 Delay Results

The results for the three implementations of the 2-element comparator is shown in Figure
5.2 .

2—-element/24-bit comparator CMOS 0.18um

3 \ \ \
e——e ripple
+——+ carry select
25 —= carry look ahead
2 "%X
g AN
> 1.5 ™
©
8 e,
L onam an o o \
1 N\
e
o
0.5 \\
0
0 10 20 30
Bit index

Figure 5.2: Delay comparison of 2-element, comparator circuit.

The carry select implementation appears to have better performance than the oth-
ers. In Figure 5.2 , 24-bit comparators are used. As proved earlier, the carry select
implementation is faster than ripple and carry select. The performance of the carry look
ahead topology is poor, because of the large fanout. The latter increases linearly from
the MSB to the LSB, thus the delay results approximately linear. The next thing to do
is to comparare for the binary tree. Section 5.3 - Figure 5.5 shows delays for the values
of the width and the number of elements. Initially 8-bit elements will be used. Results
are shown in Figure 5.3 . The number of bits is small, so the carry select comparator
will not have superior performance related to the other implementations. For small num-

ber of elements performance is the same for all topologies. As number grows, the carry

64

look ahead is winning. This happens because the number of bits of the elements is small,

resulting to small fan-in and fan-out for carry look ahead.

8-hit elements CMOS 0.18um

4
[[[T TTIT

+ carry select
carry look ahead
- o ripple

Delay (ns)
o

2 Z

1 10 100 1000
Number of Elements

Figure 5.3: Delay comparison for binary tree with 8-bit elements. Three topologies are used for the

2-element comparator: ripple, carry look ahead and carry select.

Afterwards, 16-bit elements is used for the binary tree. Results are shown in Figure
5.4 . Carry select has better performance than other two. The element width is quite
enough for the nice features of the comparator to be shown. Ripple and carry look ahead
compete each other. The former is a little more fast than the latter in many numbers.
Finally, the delay to calculate the minimum among many 24-bit elements is measured.
The results are shown in Figure 5.5 . The carry select topology is faster than the other

two. The delays of ripple and carry select are similar.

Concluding for the delays of the binary tree, the carry select comparator has better
performance than the ripple and the carry look ahead in terms of delay. The delays in-
crease logarithmicaly with the number of elements. This behaviour is inherited from the

binary tree.

5.2.2 Area Results

In Figure 5.6 - Figure 5.8 area results are shown for the binary tree. Area increaes linearly
with the number of elements. Area is measured in number of cells. This is more accurate
than mm?, because things change after place and root. There is a compact topology
for the place and root of large binary trees, proposed in [YoSi89]. Thus, the impact of

wires on the area of the circuit is limited. However, the synthsis tool does not include

65

16-bit elements CMOS 0.18um

5 I N
e ripple
+ carry select
carry look ahead
4 °
/0
w
5 Ld
23 .
5]
a
Pz
2
o
L 4
1
1 10 100 1000

Number of Elements

Figure 5.4: Delay comparison for binary tree with 16-bit elements. Three topologies are used for the
2-element, comparator: ripple, carry look ahead and carry select.

24-bit elements CMOS 0.18um

5 T [T \ t
e ripple
— carry look ahead o
* carry select
4 7
*
) R
2 Y
53
[3]
[a}
[} >
2
*
1
1 10 100 1000

Number of Elements

Figure 5.5: Delay comparison for binary tree with 24-bit elements. Three topologies are used for the
2-element, comparator: ripple, carry look ahead and carry select.

66

the area of wires in the calculations. The area for 24-bit 256-elements ripple topology is
approximately 0.75mm?.

8-Dbit elements CMOS 0.18um

30 I I
® ripple
+ carry select
carry look ahead
‘e
20
o)
©
O
<
o
<
<
10
*
0 /
0 100 200 300

Number of Elements

Figure 5.6: Area comparison for binary tree with 8-bit elements. Three topologies are used for the
2-element comparator: ripple, carry look ahead and carry select.

67

16—-bit elements CMOS 0.18um

50

40 —

o ripple

* carry select
carry look ahead

w
o

Area (KGates)
N
o

v

10

*

e

0

100 200

Number of Elements

300

Figure 5.7: Area comparison for binary tree with 16-bit elements. Three topologies are used for the

2-element, comparator: ripple, carry look ahead and carry select.

60

50

40

30

Area (KGates)

20

10

0

Figure 5.8: Area comparison for binary tree with 24-bit elements.

2-element, comparator: ripple, carry look ahead and carry select.

24-bit element CMOS 0.18um

® ripple

+ carry select
carry look ahead

Py

d

0

100 200
Number of Elements

68

300

Three topologies are used for the

5.2.3 Power Results

This section presents synthesis power results. The power analysis sequence is explained
in details in B. The values shown in the figures are close to the worst case. Initially, zeros
introduced at the inputs of the binary tree comparators. At the next cycle, a non-zero
values set of elements is introduced at the inputs. Those values decrease gradually from
the maximum-value element. For k-bit numbers the maximum value is 2¥=!. Thus, for N
elements the range of values is [2571,2¥=1_N]. The purpose is to activate as much nodes

of the tree as possible.

8-bit elements, CMOS 0.18um
10ns Cycle Period

300 ‘ ‘
® ripple
+ carry select
carry look ahead
200 2
s
£
7]
2
]
a
100
P
~ /f
0 /
0 100 200 300

Number of Elements

Figure 5.9: Power comparison for binary tree with 8bit elements. Three topologies are used for the

2-element comparator: ripple, carry look ahead and carry select.

69

16-bit elements CMOS 0.18
Cycle period 10ns

800 I I
o ripple
— + carry select
carry look ahead
600
s
£ 2
5 400
s =
a
200
[]
i
(3
O []
0 100 200 300

Number of Elements

Figure 5.10: Power comparison for binary tree with 16-bit elements. Three topologies are used for the

2-element, comparator: ripple, carry look ahead and carry select.

24-Dbit elements CMOS 0.18 um
10ns Clock Period

800 ‘ ‘
® ripple
— + carry select
carry look ahead P4
600
s
E
5 400
=
[e]
a
L]
200
*
0ls /
0 100 200 300

Number of Elements

Figure 5.11: Power comparison for binary tree with 24-bit elements. Three topologies are used for the

2-element, comparator: ripple, carry look ahead and carry select.

70

Chapter 6
Conclusions

The motivation for this work was to design a new hardware structure to support high-
speed operation in a priority queue, where the set of eligible flows changes arbitrarily
fast. The approach followed was to find the minimum (or maximum) of an arbitrary
(non-sorted) set of elements in a non-sorted set. In order to do this, a fast algorithm,
where the minimum (or maximum) is found by a binary tree of comparators is proposed.
We developed an innovative organization for the tree, where signals are propagated across
each 2-element comparator as well as the tree levels, at the same time; in this way, the
delays of the individual comparators and the delays of the tree levels are placed in parallel,
rather than in series. A carry select 2-element comparator is designed and optimized for
each level of the tree. The complexity of such a structure is sublinear inherited from the
carry select. The number of elements, which participate at every comparison, is easily

changeable at every iteration of the algorithm.

Synthesis results show that the delay of the binary tree, where carry select compara-
tors are used, is less than 5 ns for 256 elements for a 0.18 CMOS process. The same
results show that carry select topology for the binary tree has superior performance than
the ripple and the carry look ahead. The property of parallelism is proved by synthesis
results. In addition, synthesis results show nice performance in terms of array and power

consumption.

The binary tree of comparators is the heart of a weighted-round-robin scheduler that
we designed. The scheduler produces a valid output at every cycle. Synthesis results for

the tree shows that the clock cycle of the scheduler is 6 ns for a 256-element scheduler.

71

Appendices

72

Appendix A

Pattern Generator

Pattern generator is written in C (1800 lines). Initially the name of the test must be

provided by the user. Afterwards, the user chooses among three general paths.

The first is named FEzplicit Definition of Sequence and it can be used for the gener-
ation of tests for extreme and special cases. Furthermore, it can be used at the initial
stages of the design, where simple test vectors are used. The instructions are generated
in specific order, set by the user. The second path is named FEzplicit and Random Se-
quence. There, the user can select only the cases it is interested for and randomise the
appearence of others (e.g. all flows "ready”). This is used to test the correlation between
cases, namely if the scheduler executes properly one specific operation, in the presence of
different environment. The sequence of instructions is random. The third path is called
Random sequence. Here the generator outputs a random sequence of instructions. This

is used for the generation of long tests.

After choosing a path, the user is called to select the instructions to be produced.
Those are 5: reset, add one flow, do not serve scheduled flow, stop and continue. The
total number instructions to be generated, is requested. Furthermore, the percentage
of each instruction is requested, because every one has a certain field set and the user
can randomise the others or fill them with the wanted bits or both. The set of different
versions of the same operation produced is fractioned by the user(e.g. 50% add one flow

with random ready bits and 50% add one flow with all ready bits asserted).

Finally, five files are produced, one per instruction field. The verilog top module reads
those files and store them in ”memories”. In every cycle an index selects the fields from the
”memories” to construct one instruction, which is presented to the inputs of the scheduler.
The outputs of the scheduler are written in two files, in order to be compared with those

of the C code, which also accepts as input the five test files.

73

Appendix B

Synthesis Scripts

The Verilog code is read and first compilation is done with the hierarchy preserved. The

switching activity is captured using the following sequence.

** Grouped design**

e Read in the design.

e Export the SAIF file with dc_shell command rtl2saif before the compilation.

e Compile

e Use the saif2trace unix command to produce a trace file as input to the Simulator

e Simulate the design for the most common case of sequence of inputs. The Simulator

exports a .ved file.
e Use the ved2saif unix command to produce a post simulation SAIF file.
e Import the post SAIF file to dc_shell using the command read _saif.
e Set power constraints
e Compile incremental based on the previous netlist.
e Write design .v , .db.

e Read again the post SAIF file and export reports for delay, power and area.

Faster design is produced when the ungroup command is used. Ungroup removes the

hierarchy of the design and produces a flat circuit. The optimization is enhanced due to

74

the fact that the space of solutions is expanded. The synthesis tool has more choices to

make. In addition the interface among modules is defined exactly.

Ungroup design™

e Read the previous .db file.

Ungroup the design.

Compile.

Export the SAIF file with dc_shell command rtl2saif.

Use the saif2trace unix command to produce a trace file as input to the Simulator

A critical observation has to be mentioned here for the SAIF file that is produced at
this stage of synthesis. The rtl2saif is said to be working only in pre-mapped design. Using
a trick the output SAIF file can be used for gate-level power optimization. The SATF files
include information about the ports of a cell. They doesn’t include any information about
the structure of a cell. Thus, a change in the power optimization sequence permits the
more accurate gate-level power optimization. The SATIF file now contains the instances of
the cells of the technology library is used. The synthesis sequence is continued by writing
a post synthesis .v file. This file is used by the simulation tool together with the SAIF

forward annotation file.

Write .v post syntheis file

Simulate the design for the most common case of sequence of inputs. The Simulator

exports a .ved file.

Use the ved2saif unix command to produce a post simulation SAIF file.

Import the post SAIF file to dc_shell using the command read_saif.

Set power constraints

Compile incremental based on the previous netlist.

At this point the forward annotation SATF file has to be rewritten due to the fact that

the cells has changed after the compilation.

e Export the SAIF file with dc_shell command rtl2saif.

5

Use the saif2trace unix command to produce a trace file as input to the Simulator

Simulate the design for the most common case of sequence of inputs. The Simulator

exports a .ved file.

Use the ved2saif unix command to produce a post simulation SATF file.

Read again the post SAIF file and export reports for delay, power and area.

Write design .v, .db.
The accuracy of this synthesis flow is dependent only on the simulation and the cap-

turing of the activity of the nodes in the design. This is a useful flow if the interface

verilog_toggle for gate-level optimization is not available.

76

Bibliography

[CKO02] N. Chryssos, M. Katevenis, ”Weighted Maz-Min Fair Scheduling for a Crosspoint-
Buffered Crossbar”, M.Sc. Thesis, Computer Science Department, University of Crete,
April 2002 (under preparation).

[IKO1] A. Ioannou, M. Katevenis, ”Pipelined Heap (Priority Queue) Management for
Advanced Scheduling in High-Speed Networks”, Proc. IEEE International Conference
on Communications (ICC’ 2001), Helsinki, Finland, June 2001.

[GM99] P. Gupta, N. McKeown: ”Designing and Implementing a Fast Crossbar Sched-
uler”, IEEE Micro, Jan.-Feb. 1999, pp. 20-28.

[KaSM97] M. Katevenis, D. Serpanos, E. Markatos, "Multi-Queue Management
and Scheduling for Improved (oS 1in Communication Networks”, Proceed-
ings of EMMSEC’97 (European Multimedia, Microprocessor Systems, and
Electronic Commerce Conference), Florence, Italy, Nov. 1997, pp. 906-913;
http://archvlsi.ics.forth.gr/muqgpro/classSch.html

[Kat01] M. Katevenis “CS-534: Packet Switch Architecture”, lectures, Fall 2001
http://archvlsi.ics.forth.gr/ kateveni/534/

[Kes97] S.Keshav, "An Engineering Approach to Computer Networking”, Addison Wes-
ley, 1997, ISBN 0-201-63442-2.

[KKVK97] G. Kornaros, C. Kozyrakis, P. Vatsolaki, M. Katevenis, ” Pipelined
Multi-Queue Management in o VLSI ATM Switch Chip with Credit-
Based Flow Control”, Proc. 17th Conf. on Advanced Research in VLSI
(ARVLST’97), Univ. of Michigan at Ann Arbor, MI USA, Sep. 1997, pp. 127-
144; http://archvlsi.ics.forth.gr/atlasl/atlasl_arvlsio7.ps.gz

[MRS00] S. Moon, J. Rexford, K. G. Shin, ”Scalable Hardware Priority Queue Architec-
tures for High-Speed Packet Switches”, Trans. on Computers, vol. 49, No 11, November
2000

7

[Rab96] Jan M. Rabaey, ”Digital Integrated MRS Clircuits, A Design Perspective”, Pren-
tice Hall, Inc., 1996.

[Tho83] C. D. Thompson, "The VLSI complexity of sorting”, IEEE Trans. Computers,
vol. C-32, pp. 1171-1184, 1983.

[VM93] M. Vai and M.M. Moy, ”Real-time mazimum value determination on easily
testable VLSI architecture”, IEEE Trans. Circuits System I, vol. 40, pp. 283-285, Apr.
1993.

[YoSi89] H. Y. Young, A. D. Singh, ”On Implementing Large Binary Tree Architectures
in VLSI and WSI”, IEEE Trans. on Computers, vol. 38(4), pp. 526-537, 1989.

[Zha95] H. Zhang, ”Service Disciplines for Guaranteed Performance in Packet Switching
Networks”, Proceedings of the IEEE, vol. 83, no. 10, Oct. 1995, pp. 1374-1396.

78

