Security Applications of GPUs

Sotiris loannidis

Foundation for Research and
Technology — Hellas (FORTH)

Outline

Background and motivation

GPU-based, signature-based malware detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted malware

— Code-armoring techniques

— Keylogger

GPU as a secure crypto-processor
Conclusions

GPU = Graphics Processing Unit

* The heart of graphics cards

* Mainly used for real-time 3D game rendering
— Massively parallel processing capacity

24/10/14

Why GPU?

* General-purpose computing
— Flexible and programmable
— Portability

* Powerful, ubiquitous, affordable
— Dominant co-processor
— Constant innovation
— Inexpensive and always-present

* Data-parallel model

CPU vs. GPU

Control ” ALU :
=
CPU GPU
Xeon X5550: GTX480:
4 cores 480 cores
/31M transistors 3,200M transistors

24/10/14 CANS 2014

Single Instruction, Multiple Threads

 Example: vector addition

CPU code

void vecadd(
int *A, int *B, int *C, int N)
{

int i;
//iterate over N elements
for (1=0; i<N; ++i)
C[i] = A[1] + B[1];
}

vecadd(A, B, C, N);

Single Instruction, Multiple Threads

 Example: vector addition

CPU code

GPU code

void vecadd(
int *A, int *B, int *C, int N)
{
int i;
//iterate over N elements
for (1=0; i<N; ++i)
C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

~_global void vecadd(
int *A, int *B, int *C)
{
int i = threadIdx.x;
C[i] A[1] + B[1];

//Launch N threads
vecadd<<<l, N>>>(A, B, C);

24/10/14 CANS 2014

Single Instruction, Multiple Threads

 Example: vector addition

CPU code

GPU code

void vecadd(
int *A, int *B, int *C, int N)
{

int i;
//iterate over N elements
for (1=0; i<N; ++1i)

C[i] = A[i] + B[i];

}

~_global void vecadd(
int *A, int *B, int *C)
{

int 1 = threadIdx.x;
C[i] A[i] + B[i];

vecadd(A, B, C, N);

//Launch N threads
vecadd<<<l, N>>>(A, B, C);

24/10/14 CANS 2014

Single Instruction, Multiple Threads

UL 5555 555 S555%

SIMT group
(warp)

* Threads within the same warp have to execute
the same instructions

* Great for regular computations!

24/10/24 CANS2014

Outline

Background and motivation

GPU-based, sighature-based malware detection
— Network intrusion detection/prevention

— Virus scanning

GPU-assisted malware

— Code-armoring techniques

— Keylogger

GPU as a secure crypto-processor

Conclusions

Signature-based Detection

» Typically deployed at ingress/egress points
— Inspect all network traffic
— Look for suspicious activities

— Alert on malicious actions

Internal
Network

Internet

11

24/10/14

Challenges (1)

* Trdffic rates are increasing

— 10 Gbit/s Ethernet speeds are common in metro/
enterprise networks

Internet, Managed IP and

— More than 40 Gbit/s at the core ‘i el

SGLOBAL
KTRAFFIC MAP

Challenges (2)

* Ever-increasing need to perform more
complex analysis at higher traffic rates

— Deep packet inspection |
— Stateful analysis @
— 1000s of attack signatures :

7, eT0]
X 2 £
> i -
£ EB © O -
o S € c — = 5
*Q b Q <_>§ Q.
& 3 roRl — =
e 7} O P ¢ =
§] A @ — - @)
Q O o 3 Q
=) = o o E
(7, put o]
o a.

24/10/14 CANS 2014

Designing NIDS and AVs

* Fast
— Need to handle many Gbit/s
— Scalable

e The future is many-core

e Commodity hardware
— Cheap

— Easily programmable

24/10/14 CANS 2014

14

Today: fast or commodity

 Fast “hardware” IDS/IPS ‘b '(ff!'ijGSbep”Sj"rs
— FPGA/TCAM/ASIC based - US$ 20,000 - 60,000
— Usually, tied to a specific
implementation @ McAfee IDS/IPS M8000

(10s of Gbps)

— Throughput: High
~US$ 10,000 - 24,000

e Commodity “software”
NIDS/NIPS and AVs

-procesingby general (U7 opup oo
q
purp P < ~1 Gbps

— Throughput: Low %///“

24/10/14 CANS 2014 15

Typical Signature-based NIDS
Architecture

,aLen.meXIERNAL_NET any -> $HTTP_SERVERS 80

ml"; pcre:"/body=

content:"/whitepages/page me/

\x2521\x2521\x2521/")

Packet . Multi-string Match Rule Options Fvaluation
—» Preprocessing——p - » Output
Acquisition P ? Pattern Matching [2Y¢¢ess [* Evaluation Success
' v, v {
Match Failure Evaluation Failure Malicious

Flow managemeé (Innocent Flow)

Reassembly

Bottlenecks

* PCRE: Perl Compatible Regular Expression

(Innocent Flow)

Flow

16

Single-threaded NIDS performance

NIC

Preprocess

* Vanilla Snort: 0.2 Gbit/s

24/10/14

CANS 2014

Pattern
matching

Output

17

Problem #1: Scalability

* Single-threaded NIDS have limited
performance

— Do not scale with the number of CPU cores

" - b |)
o & >e) ~ATTA AN~
A DA LML QAN -y

v AR OV O R N

N \ \ \ \ \
:)) . .
"3 R LARLR

‘\. '.-—* " _;* l - < - “

I R

Multi-threaded performance

Preprocess

Pattern
matching

_-‘

. Preprocess

Pattern
matching

Output

Preprocess

e Vanilla Snort: 0.2 Gbit/s
* With multiple CPU-cores: 0.9 Gbit/s

24/10/14

Pattern
matching

>

Output

CANS 2014

>

Output

19

Problem #2: How to split traffic

cores

- x Synchronization overheads

——O v'Receive-Side Scaling (RSS)
_y=r—0

—0

—0

24/10/1% CANS 2014 20

e Vanilla Snort: 0.2 Gbit/s

RSS
NIC

I

Preprocess

Preprocess

Pattern

Multi-queue performance

matching

i

Preprocess

Pattern

>

Output

matching

Pattern

>

Output

matching

e With multiple CPU-cores: 0.9 Gbit/s
»,.MWith multiple Rx-queues:: 1.1 Gbit/s

>

Output

21

Problem #3: Pattern matching is the

bottleneck

7%

NIC

Preprocess

N

Pattern
matching

-

Output

* On an Intel Xeon X5520, 2.27 GHz, 8 MB L3 Cache
— String matching analyzing bandwidth per core: 1.1 Gbps

— PCRE analyzing bandwidth per core: 0.52 Gbps

24/10/14

CANS 2014

22

Offload pattern matching on the GPU

Pattern i
matching Output

NIC || Preprocess

24/10/14 CANS 2014 23

Pattern matching on the GPU

Both string searching and regular expression
matching can be matched efficiently by combining
the patterns into Deterministic Finite Automata

(DFA)

Input Stream State Transition Table

..all wo‘[k and no play...
e
7/
h = ch_next
.
Automaton
\ 4
state = T[state] [ch]
int state; // current state A Output Array
char ch; // input character if (state < 0) { .
report (offset,id) offset patt_ld
uint offset;// current offset } =
\

Pattern matching on the GPU

Packet Buffer

/A

GPU GPU GPU
core core core

GPU GPU GPU
core core core

N\

Matches

——
—

* Uniformly one core for each reassembled packet stream

24/10/14 CANS 2014 25

Multiple data transfers

CPU (Host) GPU (Device)

\ Device
f Global
Memory
NIC

e Several data transfers between different devices

Are the data transfers worth the computational
gains offered?

Transferring to GPU

CPU-core R *

>{ Pu —> GPU

Pu

* Small transfer results to PCle throughput degradation

=» Many reassembled packets are batched into a single
buffer

24/10/14 CANS 2014

Pipelining CPU and GPU

“BE G

Packet buffers

* Double-buffering

— Each CPU core collects new reassembled packets,
while the GPUs process the previous batch

— Effectively hides GPU communication costs

24/10/14 CANS 2014

Pattern matching on the GPU

Patt
NIC [~ Preprocess [—> A Output
matching

NVIDIA GTX 480 GPU
On an rtelXeonX5520. 227 GHz 83 MBL3 Cache
— String matching analyzing bandwidth: 1.1 Gbps 30 Gbps
— PCRE analyzing bandwidth: 8.52-Gbps 8 Gbps

24/10/14 CANS 2014 29

Offloading pattern matching to the GPU

—_—— -

RSS
NIC

Preprocess

-

Preprocess

Pattern
matching

 Vanilla Snort:

s 1M ith GPU:

Preprocess

Pattern
matching

Output

Pattern
matching

>

Output

0.2 Gbit/s
e With multiple CPU-cores: 0.9 Gbit/s
* With multiple Rx-queues: 1.1 Gbit/s
5.2.Gbit/s

>

Output

30

Outline

Background and motivation

GPU-based Signature Detection
— Network intrusion detection/prevention
— Virus matching

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Anti-Virus Databases

* Contain thousands of signatures
— ClamAYV contains more than 60K sighatures

o 38008 -
£ — ClamAV
9 25000 -
= 1l ssssssssssssssssss
& 20008 - Snort
&
© 15888 -
[
0 .
-g 10000 - #
2 #,

5008 i

N,
e

| I I
8 20 40 60 80 100 128 148 >160]
Pattern length

Y
24/10/14 CANS 2014 [:lﬂmﬂ ////32

Anti-Virus Databases

* ClamAV signatures are significant longer than

NIDS
— length varying from 4 to 392 bytes

30008 —

— ClamAV

Number of patterns

40 60 8o DS 40 ;l

D ////

Anti-Virus Databases

* Memory requirements

30008 -

— ClamAV

~14 GB

Number of patterns

48 668 86

e AD :4 ‘\
Pattern length @/lz
24/10/14 CANS 2014 Elﬂm 34

Opportunity: Prefix Filtering

* Take the first n bytes from each signature
—e.g.

Worm.SQL.Slammer.A:0:*:
deob5742d570f726d2e57690e33322e5360co0lododo5725554

 Compile all n-bytes sub-signatures into a
single Scanning Trie

 The Scanning Trie can quickly filter clean data
segments in linear time.

Scanning Trie

* Variable trie height

Xeon'

processor

Patterns

24/10/14 CANS 2014

36

Longer prefix = Fewer matches

)

) _
-
o _

N>

)
< 2000

L

=

— 1000 - 0.0001%
= 500 A

2

o

o

| [| | [
2 3 4 5 6 7 8 9 10 11 12 13 14
Prefix length

24/10/14 CANS 2014

Total Memory (MBs)

Longer prefix = More memory

400 -
300

200

C
100 - | | | | | | | | | | | |
2 3 4 5 6 7 8 9 10 11 12 13 14
Prefix length

Execution Time Breakdown

2000 - [] Transfer Results

[] Transfer Data
5 1500 - I [] GPU Search
B CPU Post-process
I 1000 -
| P
2 3 4 5 6 7

| T | | | | |
8 9 10 11 12 13 14

Execution Tim
a
(@)
(@)
|

Prefix length

e CPU time results in 20% of the total execution time,
with a prefix length equal to 14

24/10/14 CANS 2014 39

GPU vs CPU

OQOOOOOOOOOO

-—+— ClamAYV (1x core)
O—O ClamAYV (8x cores)

I I [[I I I I

I I
2 3 4 5 6 7 8 9 10 11 12 13 14
Prefix length

Throughput (GBits/sec)
¥
]

» Up to 20 Gbps end-to-end performance

Summary

e Both Network Intrusion Detection and Virus
Scanning on the GPU are practical and fast!

Outline

Background and motivation

GPU-based Malware Sighature Detection
— Network intrusion detection/prevention

— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Motivation

 Malware continually seek new methods for
hiding their malicious activity, ...
— Packing
— Polymorphism

e ...aswell as, hinder reverse engineering and code
analysis
— Code obfuscation
— Anti-debugging tricks

* |s it possible for a malware to exploit the rich
functionality of modern GPUs?

Proof-of-Concept GPU-based Malware

* Design and implementation of code armoring
techniques based on GPU code

— Self-unpacking
— Run-time polymorphism

* Design and implementation of stealthy host
memory scanning techniques

— Keylogger

GPU

CPU

Self-unpacking GPU-malware

Decryption
Decryptor Packed Malware GPU-accesible
address space
: > GPU execution
Decryption
mmap

Init Packed Malware CPU-accesible
address space
I I : > CPU execution

Bootstrapping Actual malware code execution

0 Code [0 Data/Decrypted Code I Code Execution

24/10/14 CANS 2014 45

Self-unpacking: Strengths

Current analysis and unpacking systems
cannot handle GPU code

GPU can use extremely complex encryption
schemes

Cannot run on virtual-machines
Exposes minimal x86 code footprint

GPU

CPU

Runtime-polymorphic GPU-malware

Decryption/Encryption Decryption/Encryption
I EEER I EEER
Dispatcher func1() func2()
O — — —
Decr. Encr. Decr. Encr.
mmap mmap
Control funci() func2()

Malicious Code

Control

O Code [0 Data/Decrypted Code

24/10/14

Control Malicious Code

I Code Execution

CANS 2014

GPU-accesible
address space

GPU execution

CPU-accesible
address space

CPU execution

47

Runtime-polymorphism: Strengths

* GPU can use different encryption key every
time
— Random-generated

* Each encryption key is stored in device
memory
— Not accessible from CPU

GPU-keylogger

Scan kernel’s memory to locate the keyboard
buffer

Remap the memory page of the buffer to user
space

Set the GPU to periodically read and scan

them for sensitive information (e.g., credit
card numbers)

Unmap the memory in order to leave no
traces

49

Implementation

Step 1: Locate the keyboard buffer

= Keyboard buffer dynamically changes address after system
rebooting or after unplugging and plugging back in the device

locate

controller | buffer memory
process > scanner

kernel module

scan
pages

50

Implementation

Step 2: Configure the GPU to constantly
monitor buffer contents for changes

GPU

code kernel module

start manipulate ”

keylogger page table entries <« @
ST
N OR

locate
controller | buffer > | memory
process scanner

24/10/14 CANS 2014

Implementation

Step 3: Start GPU process & Capture keystrokes

GPU
code kernel module
A\ | A\

start manipulate "

keylogger page table entries c o
S
HNe]

locate
controller | buffer > | memory
process scanner

24/10/14

CANS 2014

52

Possible Defenses

* Monitoring GPU access patterns
= Multiple/repeated DMAs from the GPU to system RAM

* Monitoring GPU usage

= Unexpected increased GPU usage

53

Current Prototype Limitations

* Requires a CPU process to control its

execution

= Future GPGPU SDKs might allow us to drop the CPU controller
process

* Requires administrative privileges
= For installing and using the module
= However the control process runs in user-space

* No kernel injection needed or data structure
manipulation, in order to hide

54

Summary

« GPUs offer new ways for robust and stealthy malware
— We demonstrated how a malware can increase its robustness
against detection using the GPU
* Unpacking
* Run-time polymorphism
— Presented a fully functional and stealthy GPU-based keylogger
* Low CPU and GPU usage
* No device hooking
* No traces left after exploitation
e User mode application; No kernel injection needed

e Graphics cards may be a promising new environment for
future malware

55

Outline

Background and motivation

GPU-based Malware Sighature Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Last years increase of SSL traffic

100 4.18x
8.76x

source: Sandvine Inc.

“We should encrypt the entire internet”
24/10/14 -- Matt Cutts, Head ofo@oogle's Webspam team 57

Motivation

e Secure Sockets Layer (SSL) is a de-facto standard
for secure communication SSL A

Secure
— Authentication, confidentiality, integrity [Connection 12

* Cryptographic keys may remain unencrypted in
CPU Registers, RAM, HDD, etc.
— Memory attacks
— DMA/Firewire attacks
— Heartbleed attack
— Cold-boot attacks

24/10/14 CANS 2014 58

PixelVault Overview

Host * Runsencryption securely
outside CPU/RAM
x86 Host CPU
e Secret keys and states
never observed from

PLAINTEXT CIPHERTEXT host

* Instead, only GPU’s non-
addressable memory is
used as storage

Graphics Card

24/10/14 CANS 2014 59

PixelVault Features

* Prevent key leakages
— Even when the base system is fully compromised

* Requires just a commodity GPU

— No OS kernel modifications or recompilation

* Provides strong security guarantees

— Even against local root attackers

Limitations
Require trusted bootstrap

Dedicated GPU execution

Misusing PixelVault for encrypting/decrypting
messages

Denial-of-Service attacks

Side-channel attacks

Conclusions

 GPUs have diverse security applications
— Both for defense and offense
— NDIS, AV, crypto-devices, secure processors, etc.
— Generic library with functionality for various applications
— Combine high-performance with programmability

* Future work
— Adapt to other ciphers and application domains
— Apply to mobile and embedded devices
— Utilize integrated CPU-GPU designs

e Credits to:

— Giorgos Vassiliadis, Lazaros Koromilas, Michalis Polychronakis, Spyros
Antonatos, Vagelis Ladakis, Elias Athanasopoulos, Evangelos Markatos

