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Abstract

We present two new 3D curvelet transforms which are built as extensions of the 2D first
generation curvelet transform. The first one, called the RidCurvelet, is especially well designed
for representing 2D surfaces in a 3D space while the second one, the BeamCurvelet, is better
adapted to represent 1D filaments in 3D space. We show that these 3D curvelet transforms can
be built using existing 3D transforms, the 3D wavelet transform, the 3D ridgelet transform,
and the 3D beamlet transform. We illustrate the applicability of these transforms on various
examples such as the detection of linear structures and planar surfaces, as well as on denoising
and inpainting.

1 Introduction
Data analysis has become a very important field of research in the past decades, one recent
point of view being the multi-scale analysis. The data used to be 2D arrays but more and
more, with the improving capabilities of computers, we tend to analyze 3D volumes as one
block and not as slices.
Wavelets [13] have been used to study 2D or 3D isotropic elements, but they fail to represent
the curvilinear edges in images. Thus the first generation curvelet transform has been built to
analyse curves in two dimensional data. These curvelets are based on the wavelet transform
and the ridgelet transform, the latter aimed at representing lines in an image. A wide range
of applications such as denoising [14, 11], contrast enhancement [15], inpainting [8, 10], decon-
volution [17, 9, 16] and source separation [1, 2] already use these transforms.
To tackle restoration problems in three dimensions, we extend these multi-scale geometric
transforms, which leads us to two 3D Curvelet transforms. Section 2 describes the two trans-
forms, section 3 shows the capability of each transform to detect different types of structures,
and finally section 4 shows applications to denoising and inpainting.

2 The structure of the transforms

2.1 Two-dimensional background
2.1.1 The 2D Ridgelet transform

The two-dimensional ridgelet function with parameters (s, k, θ) ∈ R∗+×R× [0, 2π[ was defined
by E. Candès and D. Donoho in [6, 3] as

ψs,k,θ(x, y) = s−1/2ψ ((x cos θ + y sin θ − k)/s) ,
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Figure 1: A schematic view of the steps for a 2D ridgelet transform in the Fourier
domain : Take the 2D FFT, extract lines passing through the origin, apply to each an
inverse 1D FFT and a 1D Wavelet transform.

with ψ ∈ L2(R2) a smooth function satisfying the admissibility condition (often a wavelet)Z
|ψ̂(ξ)|2/ξdξ < +∞.

We can notice that a ridgelet is a φ (wavelet) function along the direction θ, and is constant
over the perpendicular direction.
The coefficients of a transformed image are obtained by projecting the image on these functions,
which gives us

Rf(s, k, θ) =

Z
ψ(x, y)f(x, y)dxdy.

On a numerical point of view, the ridgelet transform is done in Fourier domain, which means
extracting lines passing through the center at different angles, and applying a 1D wavelet
transform on each. Figure 1 shows the process in Fourier domain.

The ridgelet functions obtained are well adapted to represent lines that run along the entire
size of an image. To represent a curve, which is limited in space, the idea was to apply the
ridgelet transform on a time-space partition of the image, with an appropriate scaling, the
parabolic scaling law.

2.1.2 The 2D Curvelet transform

The 2D first generation curvelet is then defined as follows (see [5] and [7]): The image is
partitioned in spectral bands using a filter-bank ∀s ∈ N,Ψ2s = 24sΨ(22s·) which extracts the
frequencies |ξ| ∈ [22s, 22s+2], and a low-pass scaling wavelet ψ0 for |ξ| ≤ 1.
Let P0f = ψ0 ∗ f and ∆sf = Ψ2s ∗ f . Then, we tile the direct space with subsets Q of size 2s.

Q = Q(s, k1, k2) =
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with smooth windows wQ localised near Q, such that
P
Q∈Qs

w2
Q = 1.

We use a normalisation over the space tiles using a transport operator TQ :

TQf(x1, x2) = 2sf(2sx1 − k1, 2
sx2 − k2)

and we run a ridgelet transform on each tile to obtain the curvelet coefficients.
Thus the curvelet transform of an image f is

Cf =
˘
R
`
(TQ)−1wQ∆sf

´
: s ∈ N, Q ∈ Qs

¯
.

The algorithm is :

1. Apply a 2D wavelet transform with J scales from the finest to coarsest one,

2. Set an initial block size B1 for the finest scale,

3. for j = 1 to J − 1 do

4. Partition the scale j with blocks of size Bj ,

5. if j is even then Bj+1 = Bj else Bj+1 = 2Bj

6. end for

2.2 The RidCurvelet transform
The first extension of the curvelet transform in 3D is accomplished by using the 3D ridgelet
transform. A three-dimensional ridge function is given by :

ψs,k,θ1,θ2(x1, x2, x3) = s−1/2ψ ((x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 + x3 sin θ2 − k)/s) ,

(s, k, θ1, θ2) ∈ R∗+ ×R× [0, 2π)× [0, π).

Therefore, the ridgelet transform of a function f ∈ L2(R3) is

Rf(s, k, θ1, θ2) =

Z
ψs,k,θ1,θ2(x1, x2, x3)f(x1, x2, x3)dx1dx2dx3.

The transform consists in summing the cube over planes at every direction and position. For
a fixed direction (θ1, θ2), the summation gives us a line. Each point on this line represents a
plane in the original cube. We make a mono-dimensional wavelet transform on each 3D line
to obtain the ridgelet transform.
The 3D ridge function aims at representing planes in a 3D space. It is constant over a plane
and oscillates like ψ in the normal direction.

As the 2D version, the 3D RidCurvelet transform is implemented in Fourier space : the
sum over the planes becomes a line extraction in Fourier. The main steps are summarized on
figure 2.

2.3 The BeamCurvelet transform
The other extension of the curvelet in 3D is done by using the 3D Beamlet Transform instead
of the ridgelets. A three-dimensional beam function is given by :

ψs,k1,k2,θ1,θ2(x1, x2, x3) = s−1/2ψ((−x1 sin θ1 + x2 cos θ1 + k1)/s,
(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + k2)/s).

Compared to 3D ridgelets, which sum over planes, the beamlet sums over the lines (θ1, θ2),
which gives us a plane for each direction. Therefore, the beamlet transform of a function
f ∈ L2(R3) is

Bf(s, k, θ1, θ2) =

Z
ψs,k,θ1,θ2(x1, x2, x3)f(x1, x2, x3)dx1dx2dx3.
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Figure 2: A schematic view of the steps of a 3D ridgelet transform in the Fourier
domain : Take the 3D FFT, extract lines passing through the origin at every direction
(θ1, θ2), apply to each obtained line an inverse 1D FFT and a 1D Wavelet transform
(for speed, the wavelet transform can be performed directly in Fourier domain).

The transform consists in summing the cube over lines at every direction and position. For a
fixed direction (θ1, θ2), the summation gives us a plane. Each point on this plane represents
a line in the original cube. We then apply a two dimensional wavelet transform on each plane
to obtain the beamlet transform.
The 3D beam function aims at representing filaments in a 3D space. It is constant over a line
and oscillates like ψ in the radial direction.
As the RidCurvelet, the BeamCurvelet transform is implemented in Fourier space : the sum
over the lines becomes a plane extraction in Fourier. The main steps are depicted on figure 3.

3 Detection characterisation
In order to validate the efficiency of the transforms to adapt itself to planes and filaments,
we have plotted detection level curves using Monte-Carlo simulations. Toward this, we have
simulated two cubes containing either a plane or a filament with an unitary amplitude, and
added a Gaussian noise with different powers, from 3 · 10−2 to 9. The two novel transforms
(RidCurvelet and BeamCurvelet) and the 3D Wavelet transform have been applied to each
cube. Fifty Monte-Carlo realizations of noise have been generated for each noise level and
data. Figure 4 shows the evolution of the largest normalized coefficient (i.e. the atoms are
normalized to a unit 2 norm), as a fraction of the noise level, for each transform and each data.
Error bars have been also plotted.
For the cube containing the plane, the transform getting the strongest detection level is the
RidCurvelet, and for the filament, the best one is the BeamCurvelet, which corresponds to our
expectations. We can notice that the detection level of the line by the BeamCurvelet is lower
than that for the plane, which could be surprising, but it is due to the amount of information
(number of voxels) contained in a plane, that is much bigger than the one in a line.

4



2D
Wavelet

transform

dir
ec

tio
n

⇒Plane extraction in Fourier domain
(one plane per direction)

Partial
Radon Transform

(Sum over the lines)

dir
ec

tio
n

on each plane

Fourier domain

Figure 3: A schematic view of the steps of a 3D beamlet tranform : Take the 3D
FFT, extract planes passing through the origin at every direction (θ1, θ2), apply to
each obtained line an inverse 2D FFT and a 2D Wavelet transform (for speed, the
wavelet transform can be performed directly in Fourier domain).

Figure 4: Left part (resp. right) : Given an image containing a plane (resp. a line), the
curves represent the values of the greatest coefficient of the transformed image over
the noise level. The grey horizontal line represents the noise maximum values (i.e.
four times the noise standard deviation). The RidCurvelets (resp. BeamCurvelets)
detect planes (resp. lines) with a better SNR than the two other transforms.
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4 Applications

4.1 Denoising
In order to apply the results shown by the detection curves (see previous section and figure 4),
we tried denoising a simulated data-cube containing one filament and one plane. The results
are shown on figure 6. Let C be the original data-cube, Cn the cube with additive Gaussian
noise, and Cnf the filtered cube with our denoising methods. Table 1 shows the denoising
performed with both transforms for two levels of noise. The Mean Integrated Squared Error
is calculated for the whole cube, and also restricted to the left or right part to separate the
filament and the plane.
Figures 5 and 6 show respectively the central slices of the results of the denoising, and a density
representation in the case of high noise. We can see that the plane is well recovered by the two
transforms, but the line has almost disappeared with the RidCurvelet when the noise is high.
With the BeamCurvelet, the line is recovered, but not perfectly, because of the low energy of
1D elements. The plane is recovered too, which is consistent with the detection level plots.

Noise Level σ PSNR(dB) var(Cn
f −C)

var(C)

var(Cn
f −C)

var(C)

∣∣∣
plane

var(Cn
f −C)

var(C)

∣∣∣
filament

RidCurvelet 0.1 84.3 0.037 0.028 0.185
BeamCurvelet 0.1 83.2 0.051 0.040 0.198
RidCurvelet 0.4 75.8 0.281 0.222 1.009
BeamCurvelet 0.4 76.2 0.281 0.225 0.683

Table 1: Power of the reconstruction error (Cn
f − C) over the original image (C) on the entire

image or restricted to objects.

4.2 Inpainting
Inpainting is the process of recovering missing parts in altered data. Let x be our three-
dimensional data cube with missing data indicated by the mask M . The available data is
y = Mx. Given a dictionary Φ, we are trying to recover x from the observed y and the
mask M . This is an ill posed idealized problem. To get a consistent solution, one must seek
regularized solutions. One such regularization is to suppose that x is sparse in one dictionary
of atoms Φ, which means that x can be represented by a few atoms from Φ.
Therefore, we want to solve the following inpainting problem :

argmin
x
‖ΦTx‖0 s.t. y = Mx

The algorithm applied is [8] :
Initialisation : x(0) = y
Repeat : 8>>><>>>:

λ(n) = k(n) ∗MAD
“

ΦTx(n)
”

x(n+1) = Φ HTλ(n)

“
ΦT
h
x(n) +M

“
y −Mx(n)

”i”
= Φ HTλ(n)

“
ΦT
h
(I −M)x(n) + y

i”
Where HTλ(n) is the hard-thresholding operator with threshold λ(n), and k(n) decreases lin-
early with k and stops when it reaches 0.. MAD stands for Median Absolute Deviation.

Figure 7 shows the inpainting of the Λ − CDM simulation based on the RAMSES Code
[18], on which we applied a random mask of 20% (respectively 80%) missing voxels. The L2

and L1 reconstruction error compared to the power of the original cube is 1.3% and 0.1%
(resp. 25.7% and 0.77%). The error is lower from far with the L1 norm, because when there is
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Figure 5: Central slices of the noisy and denoised cubes. First row : original image
and noisy versions. Second ow : the images denoised with the RidCurvelet transform.
Third row : the images denoised with the BeamCurvelet transform.

7



(a) (b)

Figure 6: Denoising results of a synthetic cube containing a plane and a filament. (a)
denoised with the RidCurvelet, (b) with the BeamCurvelet.

much of the data missing, like eighty percent, we loose the hot spots, and the inpainting being
a method building smooth reconstructions, we have important localized errors, even though it
looks very similar to the original.

5 Conclusion
In tis paper, we described two 3D curvelet transforms. These two transforms are well adapted
to represent filaments and surfaces in 3D space. The RidCurvelet a few fast equivalents, of
which we can cite the second generation fast 3D curvelet transform [4] and the surfacelets [12]
by Lu and Do, but there is currently no transform comparable to the BeamCurvelet, which
may be the seed of further research. Finding a fast equivalent is very interesting, since the
as-it transform has a computationally cost relatively high (O(n4) for a n3 samples data cube).
Yet they are efficient in their domain and can be used in any inverse problem application, like
deconvolution, super-resolution or source separation.
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