Steerable and scale-discretized wavelet analyses of the cosmic microwave background

Yves Wiaux ADA V Conference May 2008

Introduction

- The cosmic microwave background CMB
 - · Precision laboratory for cosmology
- Scale-space analysis
 - Wavelets beyond spectral analysis
- Presentation overview
 - I. Steerable wavelets on the sphere
 - II. Scale-space CMB analyses
 - III. Scale-discretized wavelets on the sphere
 - IV. Non-Gaussian CMB component denoising

Ι.

Steerable wavelets on the sphere

Continuous wavelets

Signals are analyzed by local filters which can be translated, rotated, and... **stereographically dilated** with a continuous dilation factor

Wavelet coefficients: $W_{\Psi}^{F}\left(
ho,a
ight) =\langle\Psi_{
ho,a}|F
angle$

+ a correspondence principle with wavelets on the plane

• ApJ 632 (2005) 15

• ApJ 652 (2006) 820

Second gaussian derivative (2GD): basis wavelet 1

Second gaussian derivative (2GD): basis wavelet 2

Second gaussian derivative (2GD): basis wavelet 3

By linear combination the wavelet is rotated at any continuous angle $\ \chi \in [0,2\pi)$

3 basis filters \leftrightarrow 3 local morphological measures: orientation, signed-intensity, and elongation!

.11.

Scale-space CMB analyses

Statistical isotropy

Illustration of the alignment analysis of local CMB features in wavelet space

Signed-intensities at one scale

Statistical isotropy

Cumulative probability map of total weights for the alignment of local CMB features in the WMAP3 coadded map

Mollweide projection, Nside = 32, 2GD wavelet scale 8.3°

Statistical isotropy

Total weight anomalies (scale 8.3°, S.L. 0.83%) synthesizing ecliptic poles and CMB dipole axes

Mollweide projection, Nside = 32, 2GD wavelet scale 8.3°

• PRL 96 (2006) 151303

Dark energy

Signed-intensities in the NVSS galaxy data (extended mask)

Mollweide projection, Nside = 64, 2GD wavelet scale 13.3°

Dark energy

Wavelet coefficients in the WMAP3 coadded map with orientation matched to NVSS data (extended mask)

Mollweide projection, Nside = 64, 2GD wavelet scale 13.3°

Dark energy

Evidence for dark energy through cross-correlation of WMAP3 and NVSS matched intensities (scale 13.3°, global S.L. 0.1 %), but no detection either in orientation or elongation

• MNRAS 384 (2008) 1289

Gaussianity

Kurtosis anomaly (scale 10°, S.L. 0.5%) of the signed-intensities in the WMAP3 coadded map, but no detection either in orientation or elongation

• MNRAS 385 (2008) 939

.111.

Scale-discretized wavelets on the sphere

Scale-discretized wavelets

Signals are analyzed by local filters which can be translated, rotated, and... **linearly dilated in harmonic space with a discrete dilation factor**

$$\widehat{(\Gamma_{\alpha^j})}_{lm} = \widetilde{K}_{\Gamma} \left(\alpha^j l \right) S_{lm}^{\Gamma} \qquad |m| < N$$

$$0 \le j \le J \le J_B(\alpha)$$

+ perfect reconstruction of signals with the filter bank

• arXiv:0712.3519v1 [astro-ph]

Wavelet frequency range I ∈ (32,128)

Wavelet frequency range I ∈ (16,64)

Wavelet frequency range $I \in (8,32)$

Wavelet frequency range I ∈ (4,16)

Wavelet frequency range $I \in (2,8)$

Wavelet frequency range $I \in (1,4)$

Unique wavelet frequency I = 1

.IV.

Non-Gaussian CMB component denoising

Non-Gaussian CMB temperature component induced by cosmic strings: typical temperature steps

FWHM 1', 7.2°x7.2° f.o.v., Fraisse et al. arXiv:0708.1162v1

Gaussian CMB temperature component induced by adiabatic perturbations

FWHM 1', 7.2°x7.2° f.o.v., Fraisse et al. arXiv:0708.1162v1

Noisy signal gradient

String tension $G\mu = 4 \times 10^{-8}$

Signal gradient after statistical denoising with scale-discretized steerable wavelets

• Tech. rep. EPFL-LTS-06.2008

Conclusion

Whatever the manifold... the plane or the sphere...

Steerability

Analysis of local morphological measures

Efficient scale-space analysis of the CMB

