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Presentation Outline

* Heavy-tailed signals and non-Gaussian modeling
* Multiscale methods for SAR image processing

* Novel Bayesian processors for estimation
and denoising

* Real images results and conclusions



Symmetric Alpha-Stable (SaS) Processes:

A (fairly...) New Statistical
Signal Processing Framework



Quotation

“The tyranny of the normal distribution is that we
run the world ... by attributing average levels of
competence to the whole population.

What really matters is what we do with the tails of
the distribution rather that the middle.”

R. X. Cringely
Accidental Empires, 1992

I can also be said abouit least-squares inisignal
processing.



The Symmetric Alpha-Stable (SaS) Model

SaS Characteristic Function:

a: characteristic exponent, O<a<=2 (defermines thickness:
of the disiribution tails, a=2: Gaussian, a=1: cauchy)

0: location parameter (determines the pdi's point of
SYHmmeiry)

y: dispersion parameter, V>0 (defermities: the spread of e
disiribution. around i1s /ocarion. pararmerer)

for Gaussian > V. = 2. X variance
for Cauchy > v. behaves like variance



SaS Probability Functions

No 2"-order
moments exist:

infinite
variance

processesl!|




Properties of SaS Laws

Naturally arise as limiting processes via the Generalized
Central Limit Theorem.

Possess the stability property: The shape of a SaS r.v. is
preserved up to a scale and shift under addition.

Contain Gaussian (a=2) and Cauchy (a=1) distributions as
members.

Have heavier tails than the Gaussian: Their tail
probabilities are asymptotically power laws > More likely
to take values far away from the median (*"Noah effect”):

P(X >X)~C X" as X—» o



Properties of SaS Laws

> Have finite p-order moments only for p<a:

> Do not have finite second-order moments or variances:

EX’ —

> Are self-similar processes: Exhibit long-range dependence
or long memory (“Joseph effect”).




Key Question!

> Since the variance if associated with the concept of
power, are infinite variance distributions inappropriate
for signal modeling and processing??

> No!l'" Variance is only one measure of spread! What
really matters is an accurate description of the shape
of the distribution. Particularly true when outliers
appear in the data.

> Note that bounded data are routinely modeled by the
Gaussian distribution, which has infinite support.



Fractional Lower-Order Moments

> Covariation of two alpha-stable r.v.'s:

v, for 1<p<a, YV \Y\ﬂl Y

> FEractional Lower-Order Moments:

|

~ Estimation Algorithms based on L ,-Norm Minimizatior,
where <= p < a <2,




Real Data Modeling

SaS with a=1.75:
Excellent tail fit
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The impulsive nature of the clutter data is
obvious.




Real Data Modeling

15

Time [sec]



SaS Applications

> Economic Time Series (Mandelbrot 60's, McCulloch 90's)

> Statistics (Zolotarev, Cambanis, Taqqu, Koutrouvelis, 70's-90's)

> Modeling of Signals and Noise:

Radar clutter - The Cauchy Beamformer, the ROC-MUSIC

Algorithm (Tisakalides and Nikias, 1995)

Underwater Noise - The alpha-matched filter (Tsakalides,
1997)
Communications Applications
Telephone line noise (Stuck and Kleiner, 1974)
Fading in mobile systems (Hatzinakos and Llow, 1997)
Traffic modeling over comm. nets (Tagqu, 1996 - Petropulu, 2002)
I'maging Applications:
Modeling, compression, watermarking, classification, and image
restoration in the DCT and Wavelet transform domains - The

Cauchy detector, the KLD similarity function between SaS's for
CBIR, ithe WIN-SAR processor, efc. (Tsakalides et al., 2000-2007)




SaS Applications in Astronomy/Physics

> Holtzmark, 1919: Distribution of the gravitational force
created at a randomly chosen point by a given system of stars
(considered to be a statistically homogeneous set of physical
points which mutually interact according to the gravitation law).

This distribution corresponds to a stable law with index a = 3/2.

> Yanovsky, A.V. Chechkin, Schertzer, Tur (1999): "Fractional
Fokker-Planck"” equation, which includes fractional space
differentiations, in order to encompass the wide class of
anomalous diffusions due to a Levy stable stochastic forcing.

> Herranz, Kuruoglu, and L. Toffolatti, 2004: Distribution of
unresolved point sources in Cosmic Microwave Background sky
maps.



Multiscale methods for image processing:

The Wavelet-based Image-Denoising
Nonlinear SAR (WIN-SAR) Processor



SAR Imaging Concept

Microwave wavelenghts: 1 cm - 1 m
Frequency ranges: 300 MHz-30 GHz

- 1500 pulses/sec
‘% Pulse duration: 10-50 psecs
_ Typical Bandwidth: 10-200 MHz
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SAR produces a two-dimensional (2-D) image. The cross-irack dimension in
the image is called range and is a measure of the “line-of-sight" distance
from the radar o the target. The along-track dimension is called azimuih
and is perpendicular to range.



SAR Imaging Concept:

The length of the radar
antenna determines the
resolution in the azimuth
(along-track) direction of
the image: the longer the
antenna, the finer the
resolution in this dimension.

Each pixel in the image

represents the radar
ﬂ backscatter for that area
AL Wi on the ground: objects

Forest  Cropland  Mountains Flnum City approximately the size of
the wavelength (or larger)
appearing bright (i.e. rough)
and objects smaller than
the wavelength appearing
dark (i.e. smooth)




SAR Qualities

Synthetic aperture radar (SAR) systems take advantage of the
long-range propagation characteristics of radar signals and the
complex information processing capability of modern digital
electronics to provide high resolution imagery.

SAR complements photographic and other optical imaging
capabilities because of the minimum constraints on time-of-day and
atmospheric conditions and because of the unique responses of
terrain and cultural targets to radar frequencies.



SIR-C/X-SAR
Image of LA

(space shuttle
Endeavour, Oct. 1994)

* Area: 62x32 sq. miles
- L-band (24 cm) radar
channel

* Horizontal polarizarion

* Very dark grey: Pacific
ocean, LAX, freeway system.
- Dark grey: mountain slops

* Lighter grey: suburban
areas, low-density housing

* Bright white: high-rise
buildings and housing alligned
parallel to radar flight track



Problem

SAR images are inherently affected by multiplicative speckle noise, due
to the coherent nature of the scattering phenomenon as well as additive

noise:

1 (X, y)=S(X,y) Nm(X, )+ Na(X, y)

Need to balance
e SR “wus| between speckle
Fon 4T suppression and
L = signal detail
preservation!!!




Wavelet Coefficients
Transform :
Shrinkage

e

Waveleis for Image Denoising

Inverse

Wavelet
Transform
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Multiresolution decomposition - 15 level

Low-resolution approximation

bigeein Three spatially
. g oriented wavelet
- /] detdils




Multiresolution decomposition - 2" |evel




Multiresolution decomposition - 39 |evel
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Previous Work in Wavelet-based Image Denoising

Donoho's pioneering work: "Denoising by soft-
thresholding” IEEE Trans. Inf. Theory 1995

Simoncelli's "Noise removal via Bayesian wavelet
coding,” 1996

Gagnon & Jouan's wavelet coefficient shrinkage
(WCS) filter, 1997

Simoncelli's work on texture synthesis, 1999

Sadler’s multiscale point-wise product technique,
1999

Achim's work on heavy-tailed modeling, 2001

Pizurica's work on inter & intra-scale statistical
modeling, 2002



Wavelet Shrinkage Methods

» Soft Thresholding

Fo(5) {Sgn(s)(|s| ~1), Js/>t

0, [s|<t

» Hard Thresholding

=== Soft Thresholding

=== Hard Thresholding




The WIN-SAR Processor

Bayesian 7 Denoised
Processor Image

i, Y, O
Estimation

WIN-SAR fundamentals:

1. Wavelet transform the speckle SAR image.

2. SaS modeling of signal wavelet coefficients.

3. Bayesian processing of the coefficients in every: level of
decomposition.



Wavelet Coefficients Modeling (1)

Stabilized p-p plot

Mormal Probability Plot

Probability

2 o9
o= M
;e o

Normal and SaS probability plots of the vertical subband at the first level of decomposition
of the image HBO6158 from the MSTAR> collection.

* hittip://www.mvlab.wpafb.af mil/public/sdms/



Wavelet Coefficients Modeling (2)

10’

P(IX|>x)

5
Data Amplitude, x

Amplitude Probability Density (APD) plot for the data of
the previous slide: The SaS provides an excellent fit o

boith the mode and the tails of the empirical distribution.



SaS Modeling of Wavelet Subband Coefficients

I'mage Subbands

Level Horizontal | Vertical Diagonal
| 1.239 1.283 1.302
2 1.418 1.125 1.295
3 1.286 1.019 1.380

The tabulated key parameter @ defines the degree of
non-Gaussianity as deviations from the value o = 2.




The WIN-SAR MAE Bayesian Estimator

After applying the DWT:

The Bayes risk estimator of s minimizes the conditional
risk, i.e., the loss function averaged over the conditional
distribution of s given the measured wavelet coeffs:

§(d):argminﬂs—§(d)( -Py(s|d)-ds
d)

s

The mean absolute error (MAE) estimator is the
conditional median of s, given d, which coincides with the
conditional mean (due to the symmetry of the distributions):

S(d)= [5-p 5] )-ds -4 e SIPLEks 08

_[Pd,s(d /s)P(s)-ds




The WIN-SAR MAE Bayesian Estimator

_[P (d —s)P(s)s-ds IP (£)P(s)s-ds

IP (d —s)P(s)-ds jPé(f)P(s)-ds

* Signal Parameter Estimatfion - by means of a LS
fitting in the characteristic function domain:

2

} arg mmZ[(I) )_(Dde(a)i)]

as,)¢,0

where: D, (@) = exp(—ys|a)|"’5)-exp(—%lwlz)



WIN-SAR MAE Processor IL/O Curves

Bayesian Processing:

Only for a=2 (Gaussian signal), the
processing is a simple linear

rescaling of the measurement: 5 ol
g of meastrem "7 The WIN-SAR MAE

- nonlinear “coring”

- operation preserves
large-amplitude

. observations and

. suppresses small-
-amplitude values ina
- statistically optimal
- fashion.

d

2 2
o.+0

For a given ratio v/c, the amount of
shrinkage decreases as @ decreases:
The smaller the value of o, the
heavier the fails of the signal PDF and
the greater the probability that the
measured value is due to the signal.




WIN-SAR

Shoft-
Thresholding

Urban scene
(dense set of large
cross-section
targets w.
intermingled tree

shadows



>

Results (3)

Real SAR Imagery *




Conclusions

Motivated the use of alpha-stable processes as
appropriate modeling tools for a large class of

applications.

. Designed and tested Bayesian processors and found
them more effective than traditional wavelet
shrinkage methods, both in terms of speckle
reduction and signal detail preservation.

. Proposed processors based on solid statistical
theory: do not depend on the use of any ad Aoc
thresholding parameter.

. Can the alpha-stable model and the associated
detection, estimation and classification techniques
be of use in Astronomical Data Analysis???
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