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Presentation OutlinePresentation Outline

• Heavy-tailed signals and non-Gaussian modeling

• Multiscale
 

methods for SAR image processing

•
 

Novel Bayesian processors for estimation 
and denoising

• Real images results and conclusions 



Symmetric AlphaSymmetric Alpha--Stable (SStable (SααS) Processes:S) Processes:

A (fairlyA (fairly……) New Statistical ) New Statistical 
Signal Processing FrameworkSignal Processing Framework



QuotationQuotation
““The tyranny of the normal distribution is that we The tyranny of the normal distribution is that we 

run the world run the world ……
 

by attributing average levels of by attributing average levels of 
competence to the whole population.competence to the whole population.

What really matters is what we do with the What really matters is what we do with the tailstails
 

of of 
the distribution rather that the middle.the distribution rather that the middle.””

R. X. CringelyR. X. Cringely
Accidental Empires, 1992Accidental Empires, 1992

It can also be said about leastIt can also be said about least--squares in signal squares in signal 
processingprocessing..



The Symmetric AlphaThe Symmetric Alpha--StableStable
 

(S(SααS) ModelS) Model

SSααS Characteristic Function:S Characteristic Function:

( ) αωγδωωφ −= je
a: characteristic exponent, 0a: characteristic exponent, 0<<αα<=2<=2

 
((determines thickness   determines thickness   

of the distribution tailsof the distribution tails, , αα=2=2:: Gaussian, Gaussian, αα=1=1: Cauchy: Cauchy))

δδ: location parameter : location parameter ((determines the determines the pdfpdf’’ss point of point of 
symmetry)symmetry)

γγ: dispersion parameter, : dispersion parameter, γγ>0>0
 

((determines the spread of the determines the spread of the 
distribution around its location parameter)distribution around its location parameter)

forfor
 

Gaussian Gaussian ÆÆ γγ = 2 = 2 x variancex variance
forfor

 
CauchyCauchy ÆÆ γγ behaves like variancebehaves like variance



0 1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

10
0

Data Amplitude, x

P
(|

X
|>

x)

α=2.0 (Gaussian)
α=1.5
α=1.0 (Cauchy)
α=0.5

0 1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

10
0

Data Amplitude, x

P
(|

X
|>

x)

α=2.0 (Gaussian)
α=1.5
α=1.0 (Cauchy)
α=0.5

Pr
(|

X
|>

x)

Amplitude, x

α=1.8

α=1.5

α=1 (Cauchy)

For
 

α<2, 
algebraic tails.

No
 

2nd-order 
moments exist:

infinite 
variance 
processes!!!

SaSSaS
 

Probability FunctionsProbability Functions

α=2, Gaussian
Exponentially 
decaying tails



Properties of SProperties of SααS LawsS Laws

¾¾ Naturally arise as Naturally arise as limiting processeslimiting processes via the Generalized via the Generalized 
Central Limit TheoremCentral Limit Theorem..

¾¾ Possess the Possess the stability propertystability property: The shape of a S: The shape of a SααS r.v. is S r.v. is 
preserved up to a scale and shift under addition.preserved up to a scale and shift under addition.

¾¾ Contain Gaussian (a=2) and Cauchy (a=1) distributions as Contain Gaussian (a=2) and Cauchy (a=1) distributions as 
membersmembers..

¾¾ Have Have heavier tailsheavier tails than the Gaussian: Their tail than the Gaussian: Their tail 
probabilities are asymptotically probabilities are asymptotically power lawspower laws ÆÆ More likely More likely 
to take values far away from the median (to take values far away from the median (““Noah effectNoah effect””):):

( ) ∞→> xcxXP    as   x~ -α
α



Properties of SProperties of SααS LawsS Laws

¾¾ Have finite Have finite pp--order moments only for order moments only for p<ap<a::

¾¾ Do notDo not have finite secondhave finite second--order moments or variances:order moments or variances:

¾¾ Are Are selfself--similar processessimilar processes:  Exhibit long:  Exhibit long--range dependence range dependence 
or long memory (or long memory (““Joseph effectJoseph effect””))..

αpp pEx p for      ∞

∞=2Ex



Key Question!Key Question!

¾¾ Since the variance if associated with the concept of Since the variance if associated with the concept of 
power, power, are infinite variance distributions inappropriate are infinite variance distributions inappropriate 
for signal modeling and processing??for signal modeling and processing??

¾¾ No!!   No!!   Variance is only one measure of spread!Variance is only one measure of spread! What What 
really matters is an accurate description of the really matters is an accurate description of the shapeshape
of the distribution.  Particularly true when outliers of the distribution.  Particularly true when outliers 
appear in the data.appear in the data.

¾¾ Note that bounded data are routinely modeled by the Note that bounded data are routinely modeled by the 
Gaussian distribution, which has infinite support.Gaussian distribution, which has infinite support.



Fractional LowerFractional Lower--Order MomentsOrder Moments

¾¾ CovariationCovariation of two alphaof two alpha--stable stable r.v.r.v.’’ss::

¾¾ Fractional LowerFractional Lower--Order Moments:Order Moments:

¾¾ Estimation Algorithms based on Estimation Algorithms based on LLpp--Norm MinimizationNorm Minimization, , 
wherewhere 1<= p < 1<= p < αα <2<2..
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Real Data ModelingReal Data Modeling
Real sea clutter @ nominal sea condition:
¾ sea state 3
¾ X-band radar 
¾ 8o look-down angle 
¾ spatial resolution of 1.52 m (5 ft) 
¾ sampled at 40 Hz

Clutter probability density modeling 

The impulsive nature of the clutter data is
obvious.

Exponential densities

SαS with α=1.75
Excellent tail fit



Real Data ModelingReal Data Modeling
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SSααSS
 

ApplicationsApplications
¾¾ Economic Time SeriesEconomic Time Series ((Mandelbrot 60Mandelbrot 60’’s, McCulloch 90s, McCulloch 90’’s)s)

¾¾ StatisticsStatistics ((ZolotarevZolotarev, , CambanisCambanis, , TaqquTaqqu, , KoutrouvelisKoutrouvelis, 70, 70’’ss--9090’’s)s)

¾¾ Modeling of Signals and Noise:Modeling of Signals and Noise:
zz Radar clutter Radar clutter –– The Cauchy The Cauchy BeamformerBeamformer, , the ROCthe ROC--MUSIC MUSIC 

AlgorithmAlgorithm (Tsakalides and Nikias, 1995)(Tsakalides and Nikias, 1995)
zz Underwater Noise Underwater Noise -- The alphaThe alpha--matched filtermatched filter ((Tsakalides, Tsakalides, 

1997)1997)
zz Communications ApplicationsCommunications Applications

••
 

Telephone line noiseTelephone line noise
 

(Stuck and (Stuck and KleinerKleiner, 1974), 1974)
••

 
Fading in mobile systemsFading in mobile systems

 
((HatzinakosHatzinakos

 
and and LlowLlow, 1997), 1997)

••
 

Traffic modeling over comm. netsTraffic modeling over comm. nets
 

((TaqquTaqqu, 1996 , 1996 ––
 

PetropuluPetropulu, 2002), 2002)
zz Imaging Applications:Imaging Applications:

••
 

Modeling, compression, watermarking, classification, and image Modeling, compression, watermarking, classification, and image 
restoration in therestoration in the

 
DCT andDCT and

 
Wavelet transform domains Wavelet transform domains ––

 
The The 

Cauchy detectorCauchy detector, , the KLD similarity function between the KLD similarity function between SaSSaS’’ss
 

for for 
CBIRCBIR, , the WINthe WIN--SAR processorSAR processor, etc., etc.

 
(Tsakalides et al., 2000(Tsakalides et al., 2000--2007)2007)



SSααSS
 

Applications in Astronomy/PhysicsApplications in Astronomy/Physics

¾¾ HoltzmarkHoltzmark, 1919, 1919:  :  Distribution of the gravitational force 
created at a randomly chosen point by a given system of stars
(considered to be a statistically homogeneous set of physical 
points which mutually interact according to the gravitation law). 
This distribution corresponds to a stable law with index α

 
= 3/2.

¾¾ YanovskyYanovsky, A.V. , A.V. ChechkinChechkin, , SchertzerSchertzer, , TurTur (1999):(1999): “Fractional 
Fokker-Planck” equation, which includes fractional space 
differentiations, in order to encompass the wide class of 
anomalous diffusions due to a Levy stable stochastic forcing. 

¾¾ HerranzHerranz, , KuruogluKuruoglu, and L. , and L. ToffolattiToffolatti, 2004, 2004:  :  Distribution of 
unresolved point sources in Cosmic Microwave Background sky 
maps.



MultiscaleMultiscale
 

methods for image processingmethods for image processing::

The The WWaveletavelet--based based IImagemage--DenoisingDenoising
NNonlinear onlinear SARSAR

 
(WIN(WIN--SAR) ProcessorSAR) Processor



SARSAR
 

Imaging ConceptImaging Concept

SAR produces a twoSAR produces a two--dimensional (2dimensional (2--D) image.  The D) image.  The crosscross--tracktrack dimension in dimension in 
the image is called the image is called rangerange and is a measure of the "lineand is a measure of the "line--ofof--sight" distance sight" distance 
from the radar to the target.  The from the radar to the target.  The alongalong--tracktrack dimension is called dimension is called azimuthazimuth

 and is perpendicular to range.  and is perpendicular to range.  

Microwave wavelenghts: 1 cm -
 

1 m
Frequency ranges: 300 MHz-30 GHz
1500 pulses/sec
Pulse duration: 10-50 μsecs
Typical Bandwidth: 10-200 MHz



SARSAR
 

Imaging ConceptImaging Concept

The length of the radar 
antenna determines the 
resolution in the azimuth

 (along-track) direction of 
the image: the longer the 
antenna, the finer the 
resolution in this dimension.

Each pixel in the image 
represents the radar 
backscatter for that area 
on the ground:

 
objects 

approximately the size of 
the wavelength (or larger) 
appearing bright (i.e. rough) 
and objects smaller than 
the wavelength appearing 
dark (i.e. smooth) 



SAR Qualities SAR Qualities 

¾ Synthetic aperture radar (SAR) systems take advantage of the Synthetic aperture radar (SAR) systems take advantage of the 
longlong--range propagationrange propagation characteristics of radar signals and the characteristics of radar signals and the 
complex information processing capability of complex information processing capability of modern digital modern digital 
electronicselectronics to provide to provide high resolution imageryhigh resolution imagery..

¾¾ SAR complements photographic and other optical imaging SAR complements photographic and other optical imaging 
capabilities because of the capabilities because of the minimum constraints on timeminimum constraints on time--ofof--day and day and 
atmospheric conditionsatmospheric conditions and because of the unique responses of and because of the unique responses of 
terrain and cultural targets to radar frequencies. terrain and cultural targets to radar frequencies. 



SIRSIR--C/XC/X--SAR SAR 
Image of LAImage of LA

 ((space shuttle space shuttle 
EndeavourEndeavour, Oct. 1994), Oct. 1994)

• Area: 62x32 sq. miles 
•

 
L-band (24 cm) radar 

channel
• Horizontal polarizarion

•
 

Very dark grey: Pacific 
ocean, LAX, freeway system.
• Dark grey: mountain slops
•

 
Lighter grey: suburban 

areas, low-density housing
•

 
Bright white: high-rise 

buildings and housing alligned
 parallel to radar flight track

• Can be used to map fire scars 
in areas prone to brush fires, 
such as Los Angeles



ProblemProblem

),(),(),(),( yxnyxnyxSyxI am +⋅=

Speckle Noise 
(multiplicative):
unit-mean, log-normal 
distributed.

Need to balance Need to balance 
between speckle between speckle 
suppression and suppression and 
signal detail signal detail 
preservation!!!preservation!!!

SAR images are inherently affected by multiplicative speckle noise, due 
to the coherent nature of the scattering phenomenon as well as additive 
noise:



Wavelets for Image Wavelets for Image DenoisingDenoising

.
Noisy 
Image

Modified 
Coefficients

Coefficients 
Shrinkage

Decomposed 
Coefficients

Wavelet 
Transform

☺
Denoised 
Image

Inverse 
Wavelet 

Transform



MultiresolutionMultiresolution
 

decomposition decomposition ––
 

11stst
 

levellevel

The 2-D wavelet 
transform is applied 
along both the 
horizontal and 
vertical directions, 
decomposing the 
image into four 
regions referred as 
image subbands.

Low-resolution approximation

Three spatially 
oriented wavelet 
details



MultiresolutionMultiresolution
 

decomposition decomposition ––
 

22ndnd
 

levellevel

The LL subband
 contains the low-pass 

information and it 
represents a low 
resolution version of 
the original image.



MultiresolutionMultiresolution
 

decomposition decomposition ––
 

33rdrd
 

levellevel

The HL (LH) subbands
 contain high (low) pass 

information 
horizontally and low 
(high) pass information 
vertically. The HH 
subbands

 

contain high-
 pass information in 

both directions. 



Previous Work in WaveletPrevious Work in Wavelet--based Image based Image DenoisingDenoising

� Donoho’s pioneering work: “Denoising by soft-
thresholding” IEEE Trans. Inf. Theory 1995

� Simoncelli’s “Noise removal via Bayesian wavelet 
coding,” 1996

� Gagnon & Jouan’s wavelet coefficient shrinkage 
(WCS) filter, 1997

� Simoncelli’s work on texture synthesis, 1999

� Sadler’s multiscale point-wise product technique, 
1999

� Achim’s work on heavy-tailed modeling, 2001

� Pizurica’s work on inter & intra-scale statistical 
modeling, 2002



Wavelet Shrinkage MethodsWavelet Shrinkage Methods

¾ Soft Thresholding

¾ Hard Thresholding
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The WINThe WIN--SAR ProcessorSAR Processor

WINWIN--SAR fundamentals:SAR fundamentals:
1.1.

 
Wavelet transform the speckle SAR imageWavelet transform the speckle SAR image..

2.2.
 

SaSSaS
 

modeling of signal wavelet coefficientsmodeling of signal wavelet coefficients..
3.3.

 
Bayesian processing of the coefficients in every level of Bayesian processing of the coefficients in every level of 
decompositiondecomposition..



Wavelet Coefficients Modeling (1)Wavelet Coefficients Modeling (1)

Normal and SNormal and SααSS
 

probability plots of the vertical subband at the first level of probability plots of the vertical subband at the first level of decomposition decomposition 
of the image HB06158 from the MSTAR* collection.of the image HB06158 from the MSTAR* collection.

* http://* http://www.mvlab.wpafb.af.mil/public/sdmswww.mvlab.wpafb.af.mil/public/sdms//

Empirical
 

pdf
 does not follow 

the straight 
Gaussian line

Empirical
 

pdf
 accurately 

follows the
 SaS

 
line,

 
α=1.3



Wavelet Coefficients Modeling (2)Wavelet Coefficients Modeling (2)

Amplitude Probability Density (APD) plot for the data of Amplitude Probability Density (APD) plot for the data of 
the previous slide: the previous slide: The The SaSSaS

 
provides an excellent fit to provides an excellent fit to 

both the both the modemode
 

and the and the tailstails
 

of the empirical distribution.of the empirical distribution.

SαS APD, a=1.3

Laplacian
 

APD, p=0.43

Empirical APD



SaSSaS
 

Modeling of Wavelet Subband CoefficientsModeling of Wavelet Subband Coefficients

LevelLevel
Image Image SubbandsSubbands

HorizontalHorizontal VerticalVertical DiagonalDiagonal

11 1.2391.239 1.2831.283 1.3021.302

22 1.4181.418 1.1251.125 1.2951.295

33 1.2861.286 1.0191.019 1.3801.380

The tabulated key parameter The tabulated key parameter αα
 

defines the degree of     defines the degree of     
nonnon--GaussianityGaussianity

 
as deviations from the value as deviations from the value αα

 
= 2.= 2.



The WINThe WIN--SAR MAE Bayesian EstimatorSAR MAE Bayesian Estimator

( ) ( )
( ) ( )
( ) ( )∫ ∫

∫
⋅

⋅
=⋅⋅=

dssPsdP

dsssPsdP
dsdsPsds

sd

sd
ds /
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)

i
kj

i
kj

i
kj sd ,,, ξ+=• After applying the DWT:After applying the DWT:

•
 

The The mean absolute errormean absolute error
 

(MAE)(MAE)
 

estimator is the estimator is the 
conditional median of s, given d, which coincides with the conditional median of s, given d, which coincides with the 
conditional mean (due to the symmetry of the distributions):conditional mean (due to the symmetry of the distributions):

•
 

The The BayesBayes
 

risk estimator of risk estimator of s  s  minimizes the conditional minimizes the conditional 
risk, i.e., the loss function averaged over the conditional risk, i.e., the loss function averaged over the conditional 
distribution of distribution of s  s  given the measured wavelet given the measured wavelet coeffscoeffs::

( )
( )

( ) ( )∫ ⋅⋅−= dsdsPdssds ds
ds

|minarg |
))

)



The WINThe WIN--SAR MAE Bayesian EstimatorSAR MAE Bayesian Estimator

( )
( ) ( )
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•
 

Signal Parameter Estimation Signal Parameter Estimation --
 

by means of a LS by means of a LS 
fitting in the characteristic function domain:fitting in the characteristic function domain:
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where:where:



WINWIN--SAR MAE Processor I/O CurvesSAR MAE Processor I/O Curves

Bayesian Processing:

( )
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The WIN-SAR MAE 
nonlinear

 

“coring”
 operation preserves 

large-amplitude 
observations and 
suppresses small-

 amplitude values in a 
statistically optimal

 fashion.

For a given ratio For a given ratio γγ//σσ, the amount of , the amount of 
shrinkage decreases as shrinkage decreases as αα

 
decreases:  decreases:  

The smaller the value of The smaller the value of αα, the , the 
heavier the tails of the signal PDF and heavier the tails of the signal PDF and 
the greater the probability that the the greater the probability that the 
measured value is due to the signal.measured value is due to the signal.

dds
s

s
22

2

)(ˆ
σσ

σ
+

=

Only for a=2 (Gaussian signal), the 
processing is a simple linear 
rescaling of the measurement:



WIN-SAR

Urban scene
(dense set of large 

cross-section 
targets w. 

intermingled tree 
shadows

RealReal
 

SAR Imagery SAR Imagery 
Results (2)Results (2)

Shoft-
 Thresholding



RealReal
 

SAR Imagery SAR Imagery 
Results (3)Results (3)

Rural scene

WIN-SAR

Shoft-
 Thresholding



1.
 

Motivated the use of alpha-stable processes as
 

 
appropriate modeling tools for a large class of 
applications.

2.
 

Designed and tested Bayesian processors and found 
them more effective than traditional wavelet 
shrinkage methods, both in terms of speckle 
reduction and signal detail preservation.

3.
 

Proposed processors based on solid statistical 
theory:  do not depend on the use of any ad hoc

 thresholding parameter.

4.
 

Can the alpha-stable model and the associated 
detection, estimation and classification techniques 
be of use in Astronomical Data Analysis???

ConclusionsConclusions
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