Wavelets and Polarized Data on the Sphere

TABLE OF CONTENT

- Wavelet/Curvelet on the Sphere
- Polarized Data
- Euclidian Images
- Spherical Images
- Restoration

PLANCK PROJECT

Successor of WMAP (better resolution, better sensitivity, more channels)
Launch in 2009
Two instruments LFI and HFI
Nine maps at $\mathbf{3 0 , 4 4 , 7 0 , 1 0 0 , 1 4 3 , 2 1 7 , 3 5 3 , 5 4 5 , 8 5 7 ~ G H z}$
Angular resolutions: 33 ', $24^{\prime}, 14^{\prime}, 10^{\prime}, 7.1^{\prime}, 5^{\prime}, 5^{\prime}, 5^{\prime}, 5^{\prime}$
Size of each map $=9 \times 12 \times 2048^{2}$

Healpix

K.M. Gorski et al., 1999, astro-ph/9812350, http:// www.eso.org/science/healpix

- Pixels = Rhombus
- Same Surfaces
- For a given latitude : regularly spaced
- Nbr of pixels :12*nside^2
- Includeds in the software:
- Anafast
- Synfast

PLANCK POLARIZED DATA: T, Q, U

Magnitude $\quad P=\sqrt{Q^{2}+V^{2}}$
Orientation $\quad \alpha=\arctan (U / Q)$

Dust 857 Ghz

Dust $85 \% \mathrm{Ghz}+$ noise

Why do we need sparse representations for Polarized Data?

Non-Gaussianity statistical test (ex: Laurence Perotto talk)
Detection (ex: Marcos Cruz talk)
Denoising/Deconvolution (ex: Yassir Moudden poster)
Component Separation (ex: Jerome Bobin talk)
Mask problem ==> inpainting (ex: Jalal Fadili Talk \& Sandrine Pires Poster)

Isotropic Undecimated Wavelet on the Sphere

Undecimated

Isotropic Pyramidal Wavelet on the Sphere

Wavelet, Ridgelet and Curvelet on the Sphere :

Wavelets, Ridgelets and Curvelets on the Sphere, Astronomy \& Astrophysics, 446, 1191-1204, 2006.

Software available at: http://jstarck.free.fr/mrs.html
Multiscale transforms, Gaussianity tests Denoising using Wavelets and Curvelets Astrophysical Component Separation (ICA on the Sphere)

Orthogonal Q-U Polarized Wavelet on the Sphere

Q,U Orthogonal Wavelet Decomposition

MP-Nonlinear Multiscale Transform

Multiscale Representation of Module-Phase instead of Q-U

Donoho, Drori, Schroeder, and Ur Rahman, SIAM Journal on Multiscale Modeling and Simulation, Vol 4, No. 4, 2005.

Interpolation-Refinement Scheme

$$
\begin{aligned}
& \mathrm{c}_{j+1, k}=c_{j, 2 k} \\
& \mathrm{w}_{j+1, k}=c_{j, 2 k+1}-\operatorname{Interp} \\
& 2 k+1
\end{aligned}\left(c_{j+1}\right) . l
$$

Restoration Problem

Undecimated MP-Multiscale Transform

Decimated Wavelet Transform on a Manifold

E/B Mode Decomposition

$$
\begin{array}{cc}
E=\sum_{\ell, m} a_{\ell m}^{E} Y_{\ell m}=\sum_{\ell, m}-\frac{2 a_{\ell m}+-2 a_{\ell m}}{2} Y_{\ell m} & a_{l m}^{E}=-\left(a_{2, l m}+a_{-2, l m}\right) / 2 \\
B=\sum_{\ell, m} a_{\ell m}^{B} Y_{\ell m}=\sum_{\ell, m} \frac{2 a_{\ell m}--2 a_{\ell m}}{2} Y_{\ell m} & a_{l m}^{B}=i\left(a_{2, l m}-a_{-2, l m}\right) / 2 \\
\mathrm{Q}=-\sum_{l, m}\left(a_{l, m}^{E} Z_{l, m}^{+}+i a_{l, m}^{B} Z_{l, m}^{-}\right) \\
\mathrm{U}=-\sum_{l, m}\left(a_{l, m}^{B} Z_{l, m}^{+}-i a_{l, m}^{E} Z_{l, m}^{-}\right) \\
\mathrm{Z}_{l, m}^{+}=\left({ }_{2} Y_{l, m}+{ }_{-2} Y_{l, m}\right) / 2 \\
\mathrm{Z}_{l, m}^{-}=\left({ }_{2} Y_{l, m}-{ }_{-2} Y_{l, m}\right) / 2
\end{array}
$$

E and B mode are closely related to the curl-free and div-free components of the vector field

E/B Undecimated Wavelet Transform for Polarized Data

Proceedings of SPIE , Vol 6701, D. Van De Ville, V. Goyal and M. Papadakis Editors, 2007.

$$
\begin{aligned}
& E=\sum_{\ell, m} a_{\ell m}^{E} Y_{\ell m}=\sum_{\ell, m}-\frac{2 a_{\ell m}+-2 a_{\ell m}}{2} Y_{\ell m} \\
& B=\sum_{\ell, m} a_{\ell m}^{B} Y_{\ell m}=\sum_{\ell, m} i \frac{2 a_{\ell m}-2 a_{\ell m}}{2} Y_{\ell m}
\end{aligned}
$$

Wavelet Transform of E and B are obtained by:

$$
w_{j}^{E}=<E, \psi_{j}>\quad w_{j}^{B}=<B, \psi_{j}>
$$

Furthermore, if we use the spherical isotropic wavelet construction of (starck et al, 2006), we have

$$
E(\theta, \phi)=c_{J}^{E}(\theta, \phi)+\sum_{j=1}^{J} w_{j}^{E}(\theta, \phi) \quad B(\theta, \phi)=c_{J}^{B}(\theta, \phi)+\sum_{j=1}^{J} w_{j}^{B}(\theta, \phi)
$$

E/B Undecimated Wavelet Reconstuction

$$
\begin{aligned}
& Q+i U=\sum_{l m} a_{2, l m}{ }_{2} Y_{l m} \quad Q-i U=\sum_{l m} a_{-2, l m}-2 Y_{l m} \\
& Q=-\frac{1}{2} \sum_{\ell, m} a_{\ell m}^{E}\left({ }_{2} Y_{\ell m}+{ }_{-2} Y_{\ell m}\right)+i a_{\ell m}^{B}\left({ }_{2} Y_{\ell m}-{ }_{-2} Y_{\ell m}\right)=\sum_{\ell, m} a_{\ell m}^{E} Z_{\ell m}^{+}+i a_{\ell m}^{B} Z_{\ell m}^{-} \\
& U=-\frac{1}{2} \sum a_{\ell m}^{B}\left({ }_{2} Y_{\ell m}+{ }_{-2} Y_{\ell m}\right)-i a_{\ell m}^{E}\left({ }_{2} Y_{\ell m}-{ }_{-2} Y_{\ell m}\right)=\sum_{\ell, m} a_{\ell m}^{B} Z_{\ell m}^{+}-i a_{\ell m}^{E} Z_{\ell m}^{-} \\
& \text {have: } \quad E=c_{J}^{E}+\sum_{j=1}^{J} w_{j}^{E} \quad \text { and } \quad B=c_{J}^{B}+\sum_{j=1}^{J} w_{j}^{B}
\end{aligned}
$$

As we have:

Then

$$
\begin{aligned}
Q(\theta, \phi) & =\sum_{l, m} c_{J, l, m}^{E} Z_{l, m}^{+}+i c_{J, l, m}^{B} Z_{l, m}^{-}+\sum_{j} \sum_{l, m} w_{j, l, m}^{E} Z_{l, m}^{+}+i w_{j, l, m}^{B} Z_{l, m}^{-} \\
U(\theta, \phi) & =\sum_{l, m} c_{J, l, m}^{B} Z_{l, m}^{+}-i c_{J, l, m}^{E} Z_{l, m}^{-}+\sum_{j} \sum_{l, m} w_{j, l, m}^{B} Z_{l, m}^{+}-i w_{j, l, m}^{E} Z_{l, m}^{-} \\
Q & =c_{J}^{E,+}+i c_{J}^{B,-}+\sum_{j=1}^{J}\left\{w_{j}^{E,+}+i w_{j}^{B,-}\right\} \\
U & =c_{J}^{B,+}-i c_{J}^{E,-}+\sum_{j=1}^{J}\left\{w_{j}^{B,+}-i w_{j}^{E,-}\right\} \\
c_{J}^{X,+} & =c_{J}^{X} \sum_{\ell, m} Y_{\ell m}^{\dagger} Z_{\ell m}^{+} \quad \text { and } \quad c_{J}^{X,-}=c_{J}^{X} \sum_{\ell, m} Y_{\ell m}^{\dagger} Z_{\ell m}^{-}
\end{aligned}
$$

Wavelet and E/B Mode Decomposition

E-Wavelet Coefficient Backprojection ($\mathrm{j}=2$)

B-Wavelet Coefficient Backprojection ($\mathrm{j}=2$)

E-Wavelet Coefficient Backprojection ($\mathrm{j}=3$)

B-Wavelet Coefficient Backprojection ($\mathbf{j}=3$)

Wavelet and E/B Mode Decomposition

E-Wavelet Coefficient Backprojection

Q,U Isotropic Undecimated Wavelet Transform

Q-Wavelet Coefficient Backprojection

U-Wavelet Coefficient Backprojection

Curvelet and E/B Mode Decomposition

E-Curvelet Coefficient Backprojection

Curvelet and E/B Mode Decomposition

B-Curvelet Coefficient Backprojection

Sparse Represention on the Sphere and Polarization

Polarized Data Denoising

$$
\begin{aligned}
& Q(\theta, \phi)=\sum_{l, m} c_{J, l, m}^{E} Z_{l, m}^{+}+i c_{J, l, m}^{B} Z_{l, m}^{-}+\sum_{j} \sum_{l, m} \tilde{w}_{j, l, m}^{E} Z_{l, m}^{+}+i \tilde{w}_{j, l, m}^{B} Z_{l, m}^{-} \\
& U(\theta, \phi)=\sum_{l, m} c_{J, l, m}^{B} Z_{l, m}^{+}-i c_{J, l, m}^{E} Z_{l, m}^{-}+\sum_{j} \sum_{l, m}^{B} \tilde{w}_{j, l, m}^{B} Z_{l, m}^{+}-i \tilde{w}_{j, l, m}^{E} Z_{l, m}^{-} \\
& \text {Where } \quad \tilde{w}_{j, k}^{E}=\delta\left(w_{j, k}^{E}\right) \\
& \tilde{w}_{j, k}^{B}=\delta\left(w_{j, k}^{B}\right)
\end{aligned}
$$

Hard thresholding corresponds to the following non linear operation:

$$
\tilde{w}_{j, k}= \begin{cases}w_{j, k} & \text { if }\left|w_{j, k}\right| \geq T_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Conclusions

- We have developed new sparse decompositions for PLANCK polarized data: On patches:
-Decimated Mod-Phase Wavelet transform
-Undecimated Mod-Phase Wavelet transform
On the sphere:
- (QU-EB) - Undecimated Wavelet
- (QU-EB) - Pyramidal Wavelet
- (QU-EB) - Curvelet
- Preliminary result for denoising applications
- Perspectives: NOISE
* Module-Phase transform ==> multiplicative noise
* Correlated noise
^ Thresholding strategy: independent or joint threshold?
\star Hard thresholding ==> more sophisticated threshold? (ex: Panos talk)
Power-spectrum \& Missing data (ex: Jalal Fadili talk)

