FILTER DESIGN: application to the detection of compact sources in CMB maps

Jose Luis SANZ

IFCA, Santander

I. Methodology

- Resolved compact sources
- Filter: Scalar, Vector, Matrix
- Criteria for detection
- Parameter estimation

II. Applications

- Toy Model
- Planck simulations

Techniques for resolved sources:

- Component separation
- Bayesian approach
- Fusion
- Filters

THE MICROWAVE SKY:

CMB + contaminants + noise

Contaminants:

DIFFUSE EMISSION:

Galactic emission (synchrotron, free-free, dust)

•COMPACT SOURCES:

- >Extragalactic point sources
- >Clusters of galaxies (Thermal and kinematic Sunyaev-Zeldovich effect)

Extragalactic point sources

- >Two main populations:
 - Radio sources (below ~ 200 GHz)

Toffolatti et al. 1998, de Zotti et al. 2005

• Infrared sources (above ~ 200 GHz)

Guiderdoni et al. 1998, Granato et al. 2001

- > Properties:
 - Point-like objects ⇒ beam profile
 - · Different frequency dependence for each source
 - localized objects
- ⇒ not suited for global separation techniques!

Objectives:

- 1. To detect as many compact sources as possible, with as fewer false detections as possible
- 2. To estimate with the lowest error parameters (position, flux, spectral index, etc) of the sources

in order to: Clean CMB maps (C_i, primeval non-Gaussianity,...)

Do extragalactic science (catalogs,...)

MATCHED FILTERS

- Standard Matched Filter (MF)
 Single image → Single image
- Matched multifilter (MMF) or Multifrequency filter (MFF) N images → Single image
- ► Matched Matrix filter (MMXF)
 N images → N images

1. SCALAR Filter

$$d(x) = A\tau(x) + n(x), \qquad 1image$$

$$d_f(x) = \int dy \psi(y-x) d(x), \quad 1image$$

1)
$$\langle d_f(0) \rangle = A$$
 2) σ_f Minimum

$$\hat{\psi}(q) \propto \frac{\hat{\tau}(q)}{P(q)}$$

2. VECTOR Filter

$$d_i(x) = f_i A \tau_i(x) + n_i(x), f_i : freq, n images$$

$$d_f(x) = \int dy \sum_i \psi_i(y - x) d_i(x), \qquad 1 \text{ image}$$

1)
$$\langle d_f(0) \rangle = A$$
 2) σ_{d_f} Minimum

$$\tau = (f_i \hat{\tau}_i), P = (P_{ij}): \qquad \hat{\psi}(q) = (\hat{\psi}_i) = P^{-1} \tau$$

Herranz, Sanz et al. 2002, MN336, 1057

3. MATRIX Filter

$$d_{i}(x) = A_{i}\tau_{i}(x) + n_{i}(x) \qquad i = 1, \Lambda, n \text{ images}$$

$$d_{if}(x) = \int dy \sum_{j} \psi_{ij}(x - y) d_{j}(y) \qquad n \text{ images}$$

1)
$$\langle d_{if}(0) \rangle = A_i$$
 2) σ_{if} MINIMUM

$$F = \left(F_{ij} = \lambda_{ij}\hat{\tau}_j\right), P = \left(P_{ij}\right), H = \left(H_{ij} = \int dq \,\hat{\tau}_i\hat{\tau}_j P_{ij}^{-1}\right),$$

$$\lambda = \left(\lambda_{ij}\right) = H^{-1}, \qquad \hat{\psi}(q) = \left(\hat{\psi}_{ij}\right) = FP^{-1}$$

Herranz, Sanz 2008, J.S.T.S.P.20

TOY MODEL

• 2 IMAGES A, B:

• Color noise:
$$\begin{cases} \sigma_A = \sigma_B = 1, & \xi_{AB} = 0.67 \\ A: P_A = N_A q^{-2.5}, & B: P_B = N_B q^{-0.5} + \frac{N_A}{2} q^{-2.5} \end{cases}$$

• Point Source:
$$\begin{cases} uniform \ dist. \ in \ [2.75, 3.75] \\ FWHM_A = 3.33pix, \ FWHM_B = 10pix \end{cases}$$

TOY MODEL

250 simulations

Relative Errors

RESULTS: MMXF vs. MF

GAIN:

Image A: gain is small (3%),

Image B: gain is high (45%)

Relative ERROR in Flux:

Image A: approx. the same,

Image B: MF spreads more.

DETECTION of POINT SOURCES on Planck simulations

D. Herranz, J. L. Sanz (2008)

The Planck Mission

- It is a satellite from ESA (to be launched in 2009) that will measure over the whole sky the CMB signal (intensity and polarization) with unprecedented resolution and sensitivity
- Multifrequency coverage (9 channels from 30-857 GHz)
- High angular resolution (5 -33 arcminutes)

2. Simulations

- Foregrounds: Planck Reference Sky
 - Thermal Dust
 - Synchrotron
 - Free-Free
 - SZ Clusters
- -CMB
- Point Sources: de Zotti et al. (2005)
- Instrumental Noise

Flat patch of the sky. This are the contributions in one field:

The Simulation:

	Freq	Im Size(pix)	FWHM (')	Pix Size (')
•	30 GHz:	512x512	33.0	1.71
•	44 GHz:	512x512	24.0	1.71
•	70 GHz:	512x512	14.0	1.71

- Region of the sky centered at the GNP,
- 14.66x14.66 degrees,
- 512x512 pix of size 1.71x1.71 arcmin

Matched Filter

Matrix Filter

Planck Simulation

Conclusions

 We have compared the performance of two filters when dealing with the detection of point sources in CMB astronomy (MF on single images and MMXF).

1) Toy model:

better performance (Gain and Flux error) of MMXF vs. MF on two correlated images.

2) Planck simulations:

- We have considered simulations with the Planck characteristics for 3 Planck frequencies (30, 44, 70 GHz).
- We have found that the MMXF outperform the MF:
- higher n. of detections for a fixed n. of false alarms.
- Completeness is higher.