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Abstract—We report here on extending GMCA to the case of
convolutive mixtures. GMCA is a recent source separation algo-
rithm which takes advantage of the highly sparse representation
of structured data in large overcomplete dictionaries to separate
components in multichannel data based on their morphology.
Many successful applications of GMCA to multichannel data
processing have been reported : blind source separation, data
restoration, color image denoising and inpainting, etc. However,
the data model in GMCA assumes an ideal instrument, not
accounting for instrumental impulse response functions which
can be crucial in some important applications such as CMB
data analysis from the Planck experiment. We show here how
to build on GMCA for that purpose and describe an iterative
thresholding algorithm for joint multichannel deconvolution and
component separation. Preliminary numerical experiments give
encouraging results.

Index Terms—Multichannel data, Blind source separation,
multichannel deconvolution, overcomplete representations, spar-
sity, morphological component analysis, GMCA, morphological
diversity.

I. INTRODUCTION

In preparation for the challenging task of analyzing the full-
sky CMB maps that will shortly be available from ESA’s
Planck1 experiment, dedicated multichannel data processing
methods are being actively developed. A precise analysis of
the data is of huge scientific importance as most cosmological
parameters in current models are constrained by the statistics
(e.g. spatial power spectrum, Gaussianity) of the observed
primordial CMB field [1].

A first concern is that several distinct astrophysical pro-
cesses contribute to the total observed radiation in the fre-
quency range used for CMB observations [2]. The task of
unmixing the CMB, the Galactic dust and synchrotron emis-
sions, the contribution of the Sunyaev-Zel’dovich (SZ) effect
of galaxy clusters, to name a few, has attracted much attention.
Several generic and dedicated source separation algorithms
have been applied and tailored to account for the specific
prior knowledge of the physics at play ( [3]–[5] and references
therein).

Among these methods, GMCA (Generalized Morphological
Component Analysis) has proven to be an efficient and flexible
source separation algorithm. GMCA takes advantage of the
sparse representation of structured data in large overcomplete
signal dictionaries to separate sources based on their morphol-
ogy. A full description of GMCA is given in [6], [7] and its
application to CMB data analysis is reported in [5].

1http://astro.estec.esa.nl/Planck

However, another issue is multichannel deconvolution : the
different channels of practical instruments have different point
spread functions. Hence, a correct fusion of the multichannel
observations for the purpose of estimating the different astro-
physical component maps, requires a simultaneous inversion
of the spectral mixing (i.e. each component contributes to
each channel according to its emission law) and of the
spatial mixing (i.e. convolution by the instruments psf in
each channel). Our purpose here is to extend the GMCA
framework and propose and algorithm that can achieve such
a joint deconvolution and separation. The devised method
relies on the a priori sparsity of the initial components in
given overcomplete representations (e.g. Fourier, wavelets,
curvelets). It is an iterative thresholding algorithm with a
progressively decreasing threshold, leading to a salient-to-fine
estimation process which has proven successful in related algo-
rithms ( [8]–[10] and references therein). Results of numerical
simulations with synthetic 1D and 2D data are presented, in
the specific case where the mixing parameters are fully known
a priori. These preliminary toy experiments motivate current
efforts to extend the range of applications to the more difficult
case of blind separation where the mixing matrix and possibly
the beams are unknown. We are also working on applying the
proposed method to multichannel CMB data.

II. LINEAR MIXING AND CHANNEL-WISE CONVOLUTION

The simplest model encountered in the field of component
separation states that the observations are a noisy linear
instantaneous mixture of the initial components. Such a model
has, for instance, often been used to describe multichannel
CMB observations : the total sky emission observed in pixel
j with detector i sums the contributions of n components

xj
i =

n∑
k=1

ak
i sj

k + nj
i (1)

where sj
k is the emission template for the kth astrophysical

process, herein referred to as a source or a component. The
coefficient ak

i reflects the emission law of the kth source in
the frequency band of the ithsensor, and nj

i stands for the
noise contributions to the observations. When t observations
are obtained from m detectors, this equation can be put in a
more convenient vector-matrix form:

X = AS + N (2)

where X and N are m × t matrices, S is n × t, and A is
the m×n mixing matrix. For simplicity, the noise is assumed
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uncorrelated intra- and inter- channel, with variance σ2
k in the

kth channel.
Commonly, the different channels of typical multichannel

instruments do not have the same, what is more high reso-
lution, impulse response or point spread function (psf ). The
above model is then not capable of correctly rendering the
observations : assuming the psf ’s are known, fitting that model
to the observations is not making the most of the data and
will not produce estimates of the component maps at the
best possible resolution. A notable exception is when the
multichannel observations offer multiple views of a single
process in which case there is no separation to be performed
and the analysis can be reduced from a multichannel to a
single channel deconvolution problem without loss of statis-
tical efficiency [11]. As mentioned above, our interest here
is with analyzing multiple convolutive mixtures of multiple
sources, when the different channels have different point
spread functions :

X = H(AS) + N (3)

denoting H the multichannel convolution matrix-operator, act-
ing on each channel separately. The data observed in channel
i is

xi = aiSHi + ni (4)

where Hi is the t × t matrix of the convolution operator in
this channel, xi, ai and ni are respectively the ith lines of X ,
A and N .

In practice, both the sources S and their emission laws
A may be unknown, a case referred to as blind, or only
partly known. Although blind deconvolution would be an
added excitement, we consider here that the instrumental psf ’s
are fully known a priori. The purpose of source separation
algorithms is then to invert the mixing process and provide
estimates of the unknown parameters. This is most often an ill-
posed problem, requiring additional prior information in order
to be solved : one needs to know what in essence makes the
sources different.

For instance, they may have a priori disjoint supports in a
given representation such as time and/or frequency leading to
clustering or segmentation algorithms. In some cases, knowing
a priori that the mixed sources are statistically independent
processes will enable their recovery : this is the framework
of Independent Component Analysis (ICA), a growing set
of multichannel data analysis techniques, which have proven
successful in a wide range of applications [12]. Indeed, al-
though statistical independence is a strong assumption, it is
in many cases physically plausible. ICA algorithms for blind
component separation and mixing matrix estimation depend
on the a priori model used for the probability distributions of
the sources [12]–[15].

An especially important case is when the mixed sources are
highly sparse, meaning that each source is only rarely active
and mostly nearly zero. The independence assumption then
ensures that the probability for two sources to be significant
simultaneously is extremely low so that the sources may again
be treated as having nearly disjoint supports. It is shown
in [16] that first moving the data into a representation in

which the sources are sparse greatly enhances the quality of
the separation.

Working with combinations of several bases or with very re-
dundant dictionaries such as the undecimated wavelet frames,
ridgelets or curvelets [17] leads to even sparser representations
: this is exploited by GMCA. Sparsity is now generally
recognized as a valuable property for blind source separation.
At the same time, the benefits of sparsity for single channel
deconvolution problems in signal and image processing have
been experimented in [18]–[20]. Hence, the joint multichannel
deconvolution and source separation problem presumably has
much to gain from sparse representations in large dictionaries,
with a GMCA-like recovery process. Following the assump-
tions in GMCA which we are extending here to the case of
convolutive mixtures, we assume that the source processes
have sparse representations in a priori known dictionaries. For
the sake of simplicity, we consider that the components all
have a sparse representation in the same orthonormal basis
Φ. Recent analyses in [21]–[23] give theoretical grounds for
an extension to frames and redundant dictionaries. We also
assume that the source processes are generated from sparse
coefficient vectors αi sampled identically and independently
from Laplacian distributions

P (αi) ∝ exp (−λi‖αi‖1) (5)

with inverse scale parameter λi, and si = αiΦ.
The linear operator considered here, linear mixing followed

by convolution in each channel, is somewhat cumbersome to
handle : mixing acts on each column of S separately while
convolution acts on the each line of AS separately. The full
operator does not factorize very nicely. The order in which the
mixing and the convolution matrices apply obviously matters.
In the case where A and H are invertible, inverting the full
operator consists in first applying the inverse of H and then the
inverse of A. When additive noise corrupts the observed data,
or when the channel-wise convolution operator or the mixing
matrix are underdetermined, inversion asks for some sort of
regularization. We consider here inverting the joint mixture
and convolution operator in a possibly underdetermined and
noisy context thanks to regularization induced by the a priori
sparsity of the component signals to be recovered. Making
the most of the noisy data to estimate the sources neither
reduces to applying the inverse of A and deconvolving each
source separately, nor deconvolving each channel separately
and applying the inverse of A. This is also true of estimating
A with S fixed. A global necessarily intricate multichannel
data processing is necessary.

III. FULL OBJECTIVE FUNCTION

With the assumptions in the previous section, the joint
deconvolution and separation task is readily expressed as a
minimization problem, in all respects equivalent to a maximum
a posteriori estimation of A and S assuming an improper
uniform prior on the entries of A :

min
A,S

1
2
‖X −H( AS )‖2Σ +

∑
i

λi‖siΦt‖1 (6)
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where the subscript Σ reminds us of the noise covariance
matrix, and Φt is the transpose of Φ. Equivalently, one has :

min
A,{αi}

1
2
‖X −H(

∑
i

aiαiΦ )‖2Σ +
∑

i

λi‖αi‖1 (7)

The above objective balances between a quadratic measure
of fit and an `1 sparsity measure of the solution. The `1
is used here in place of the combinatorial `0 pseudo norm
which is the obvious sparsity constraint, however much less
conveniently handled [24]. Still, the above problem is non
convex. Nevertheless, starting form an initial guess, a solution
of reduced cost can be reached using and iterative block
coordinate relaxation approach [25], [26], where the pairs
ai, si (ith column of A, ith line of S) are updated one at a
time. Assuming without much loss of generality that Φ is
the identity matrix, we have, alternating over i, the following
minimization problems :

min
ai,si

1
2
‖Ri −H( aisi )‖2Σ + λi‖si‖1 (8)

where
Ri = X −H(

∑
j 6=i

ajsj ) (9)

Rewriting the quadratic matrix norm with an explicit sum over
lines leads to :

min
ai,si

∑
k

1
2σ2

k

‖Ri,k − ai
ksiHk‖2 + λi‖si‖1 (10)

where Ri,k is the kth line of Ri. Keeping si fixed, zeroing the
gradient of the above with respect to ai

k leads to the following
update rule :

ai
k =

(
siHkHt

kst
i

)−1
siHkRt

i,k (11)

Conversely, keeping ai fixed, zeroing the gradient2 of the
above with respect to si leads to :

si =

 X
k

ai
k

σ2
k

Ri,kHt
k − λisign(si)

! X
k

“ ai
k

σk

”2
HkHt

k

!−1

(12)

provided the rightmost term exists. Save for the sign func-
tion, this is the least squares solution to the multichannel
deconvolution in the single-input multiple-output (SIMO) case.
An important feature here is the effective beam used for the
deconvolution : the effective beam may be invertible even
if the individual beams are not. Following the discussion
in [11] any robust 1D deconvolution algorithm could be
applied to the 1D-projected data. Here, as hinted to by the
sign function, robustness will come from shrinkage. However,
equation (12) is not easily inverted and probably has no closed
form solution owing to the coupling matrix on the right which
would commonly not be diagonal. It would have to be solved
numerically in an iterative scheme, in the general case. When
this factor is diagonal (or approximately diagonal), the closed
form solution is known as soft-thresholding. In all cases, the
full set of update rules leads to a slow algorithm which is likely

2We stick to loose definitions, knowing that rigorous statements can be
made with no impact on the result.

to reach and stay stuck by the local minimum closest to the
starting point. In the following, we focus on approximations
for faster and more robust algorithms and propose a practical
rule for updating the components S assuming the mixing
matrix A is known and fixed. Future work will combine this
with a practical learning step on A to complete the algorithm.

IV. KNOWN MIXING MATRIX

When A is known a priori, problem (6) reduces to a linear
inverse problem with a sparsity constraint on the solution :

min
S

1
2
‖X −H( AS )‖2Σ +

∑
i

λi‖si‖1 (13)

In the single channel case, deconvolution with an l1 penalty
has been studied previously with a known mixing matrix [18]–
[20]. More generally, solving linear inverse problems with
sparse priors or l1 regularization has attracted much attention
lately [27]–[30]. If the combined mixture and convolution
linear operator is underdetermined, the above cost function
is not strictly convex. This is where sparse decomposition
methods have proven especially profitable. When the operator
is overdetermined, the l1 sparsity constraint is a useful regu-
larization when the data is corrupted by noise : the available
budget will hopefully not be spent on representing small
noise coefficients. Theoretical results have been established
regarding the existence and uniqueness of a solution, and
general algorithms have been proposed to solve some of these
problems ( [31] and references therein). In principle, these
methods apply to the problem at hand. Among these, we
focus on iterative projected descent algorithms which have
been proposed in [29], [30], [32], [33] for the inversion of
underdetermined linear operators with sparsity constraints.

Consider again updating each source si alternately, assum-
ing all the other sources fixed. The minimization problem (13)
can be rewritten as follows :

min
si

f1(ai, si) + λif2(si) (14)

where

f1(ai, si) =
X

k

1

2σ2
k

‖Ri,k − ai
ksiHk‖2 and f2(si) = ‖si‖1 (15)

The gradient of f1 with respect to si assuming all the other
parameters are fixed is given by :

g =
∑

k

−ai
k

σ2
k

Ri,kHt
k +

(ai
k

σk

)2

siHkHt
k (16)

The Hessian of f1 is given by :

H =
∑

k

(ai
k

σk

)2

HkHt
k (17)

From here, several optimization schemes are possible all akin
to a projected descent algorithm, the descent direction is
given by the conjugate gradient. Typically, following recent
developments in optimization [29], [30], [32], [33]:

snew
i = ∆λi

(
sold

i − µgH−1
)

(18)

where ∆λi
is a soft or hard thresholding operator with
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threshold λi and µ is the usual step size parameter. It follows
that :

snew
i = ∆λi

 
(1− µ)sold

i + µ

 X
k

ai
k

σ2
k

Ri,kHt
k

!
H−1

!
(19)

Taking a single step of length µ = 1 at each iteration leads
to the following update rule :

si = ∆λi

0@ X
k

ai
k

σ2
k

Ri,kHt
k

! X
k

“ ai
k

σk

”2
HkHt

k

!−1
1A (20)

which is simply thresholding the linear least squares so-
lution. The numerical experiments in the next section were
conducted using this rule to update each source alternately
and iteratively. Following a specific feature of MCA and
GMCA-like algorithms, the threshold is initially set to a high
enough value and is progressively decreased along iterations,
leading to a robust salient to fine estimation process. The
strategy by which the thresholds are progressively decreased
along the iterations is an important issue discussed in [34].
As mentioned earlier, the computation of the inverse Hessian
should be better behaved than inverting each single channel
deconvolution operator separately [11].

Other similar projected descent iterations with proper pre-
conditioning were also experimented with but did not lead to
better results. The following projected Landweber iteration,

Snew = ∆{λi}

“
Sold + µAtHt

“
X −H(AS)

””
(21)

where µ is a small enough step size and Ht is the adjoint
of the channel-wise convolution operator, used in conjunction
with a decreasing threshold, is slow but leads to very similar
results. Without the decreasing threshold, the latter iteration
was even slower to convergence and less robust in recovering
the mixed sources. Other preconditioners could be used to
lower the complexity of the iteration such as the inverse
diagonal or block-diagonal of the Hessian [23], or to handle
cases where the Hessian is badly conditioned. Using a different
step length for each scale, in a projected Landweber iteration
to solve a wavelet-regularized deconvolution is an interesting
possibility discussed in [35]. Current work is also on other
iterations involving the inverse or pseudo inverse of A. After
the sources S have been estimated for a given mixing matrix
A, the next step consists in updating the mixing matrix using a
suitable learning step. Alternating source estimation steps and
mixing matrix learning steps is current research to be reported
shortly.

V. NUMERICAL EXPERIMENTS

In a first set of experiments, with multichannel 1D data,
source signals of length t = 128 were generated as Bernoulli
spike trains with parameter p. The spikes were given random
amplitudes uniformly distributed between −1 and 1. Random
mixing matrices and beams were used. The latter are positive
with compact support. The beams and columns of the mixing
matrix were normalized to unit l2 norm. Noise was added
to the mixed and convolved sources, sampled from a normal
distribution with 0.1 standard deviation. The experiments were
repeated 500 times.
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Fig. 1. top : Synthetic mixtures in the three channels used in this experiment.
bottom : The two original sources are in green. The source signals recovered
using the proposed algorithm appear in red. The results obtained using a
simple pseudo-inverse of the linear mixture and convolution operator appear
in light blue.

Figure 1 shows typical synthetic observation in three
channels. The joint separation and deconvolution objective
was approached using the proposed alternating iterative
progressive thresholding scheme (20). The results were
compared to those obtained using a multichannel Wiener
filter and a simple pseudo-inverse of the full linear operator.
Figure 2 display a comparison of these three methods in
terms of false postives to true postives curves, as the final
threshold is decreased. The impact of an increasing number
of channels, or an increasing sparsity of the sources, or
an increasing noise variance on the performance of these
algorithms is shown to agree with what is expected. In all
cases, the proposed iterative thresholding scheme performs
much better than the other two filters.

In a second set of experiments, with multichannel 2D data,
three natural images shown on the left of figure 5 were used
to generate six random mixtures. These were then degraded
by 2D-convolution resulting in the blurred images shown on
figure 4, using the Laplacian beams shown on figure 3. Apply-
ing the proposed algorithm in the curvelet domain, enables a
good recovery of the input images from the multichannel data
as shown on figure 5 where the separated and deconvolved
images are on the right.
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Fig. 2. Curves in red were obtained using the proposed alternate iterative
and progressive thresholding scheme. The pseudo-inverse gives the results
in dark blue while the Multichannel Wiener Filter gives those in light blue.
top : Lowering the Bernoulli parameter p from 0.4 to 0.1 gives sparser source
processes for which the proposed scheme clearly performs better. middle :
The standard noise deviation is lowered from 0.1 to 0.05, 0.025, 0.001 with
the expected impact on the algorithms performance. bottom : Increasing the
number of channels from 2 to 3, 4, 6 also leads to better source estimation.
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Fig. 3. The six Laplacian beams used to obtain the blurred image mixtures
shown on figure 4, by 2D convolution.
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Fig. 4. Simulated observations consisting of blurred linear mixtures of three
intial images shown on figure 5, in six channels with psf ’s shown on figure 3.
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Fig. 5. left : The three initial images. right : The three recovered images
using the proposed joint deconvolution and separation algorithm in the curvelet
representation.
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VI. FUTURE WORK

The preliminary results reported here have demonstrated
the feasibility of a joint separation and deconvolution of
multichannel data. We described an alternating progressive it-
erative thresholding algorithm to obtain a robust inverse of the
mixing and convolution linear operator. Current work is with
extending this method to the case where the mixing matrix
is not known a priori, much in the line of GMCA for blind
source separation. The idea is to alternate updates of S and A,
i.e. sparse coding and dictionary learning steps, in a salient-
to-fine process with a threshold decreasing along iterations.
An important application is CMB data analysis, which will
benefit from the versatility of GMCA-like algorithms which
can easily account for prior knowledge of the emission laws
of the mixed components. Assuming unknown but parametric
psf ’s is yet another exciting perspective.
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