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1 Abstract
In optical interferometry, the data available to reconstruct
images are a few noisy points of their Fourier spectra. The
image reconstruction problem is thus highly underdeter-
mined. However, astronomical images are known to be
highly compressible, meaning that they admit a sparse re-
presentation in some basis. This problem can be recasted
as a Compressed Sensing (CS) problem, for which a lot
of theoretical results and reconstruction algorithms have
been elaborated in the recent years. We have started to
investigate how some of these algorithms exploiting the
sparsity of images could help in this problem in the case
of upcoming phase referencing systems.

2 Underdetermined systems
and sparse representations

– Consider the underdetermined problem y = V x, where
y : (M, 1) is the observation vector ; V : (M,N) is the
"sensing matrix" (accounts for acquisition + sparsity) ;
x : (N, 1) is the unknown vector parameter (a vectorized
image)
N > M → Infinity of solutions

– CS approach : takes advantage of the prior informa-
tion that x is compressible, i.e. there exists a basis
W (N,N) where the representation u of x is sparse :
x = Wu, with supp(u) = |u|0 = S << N
S : sparsity of u

– In general, wavelet bases are good compressors ("spar-
sifiers") for astronomical images. In particular, images of
"unresolved" stars are sparse in direct space ( W = I)

⇒ Solution of the system obtained through :
u∗ = argminu|u|0 subject to VW︸︷︷︸

Φ

u = y.

– Two questions :
1/ Theoretical : For a known vector y, is u∗ unique ?
→ Yes if rank(Φ) ≥ 2S
→ For sufficiently small S : argminu|u|0 ⇔ argminu|u|1
→ Gribonval (2007) : can obtain the unique solution via
Lp minimisation, 0 ≤ p ≤ 1 (Lp = (

∑
|ui|p)

1
p) . Moreover

for fixed S, Lp minimisation with p < 1 needs fewer mea-
surements than with p = 1.

2/ Practical algorithms : if unique solution exists,
how to find it ?
→ L0 minimization : N-P hard
→ L1minimisation affordable via linear programming
→ Lp, 0 < p < 1 : efficient but non convex (local minima)
→ Greedy algorithms... (OMP, BP and variants)

– An approximate Lp minimization algorithm : IRLS (Rao
1999, Chartrand 2007) :
• Look for argminu

(
L =

∑
i |ui|p − λ

t(Φu− y
)

• Get the fixed point equation :

u = diag{ 1

|u1|p−2
. . .

1

|uN |p−2
}︸ ︷︷ ︸

Π(u)

ΦH(ΦΠ(u)ΦH)−1y

•Whence the iterative algorithm :

u(k+1) = Π(u(k))ΦH(ΦΠ(u(k))ΦH)−1y

– Empirical success if :
→ u(0) := minimum energy (L2) solution
→ algorithm is regularized : Π

(k)
ii = (u2

i + ε(k))p/2−1.

– Can introduce a variable stepsize α(k) to speed up
convergence :

u(k+1) = u(k) − α(k)

p Π(u(k))∇L(k)

Fig. 1 : Comparison of exact reconstruction probability
(white =1, black=0) for varying undetermination ratio M

N
and for various p (abscissa : p = −5,−4..., 0, 1). The ma-
trix Φ is a randomly undersampled 2D FT and the images
are made of spikes (stars). Approximation of L0 pseudo
norm is the more efficient with this algorithm. Note that
maximizing the Lp norm for p < 0 also leads to sparse
representations.

3 Application to optical inter-
ferometry : noiseless case

In interferometry, interferferences between the wavefront
of the observed objects on two telescopes at position ri
yields fringes. For an observation wavelength λ, the posi-
tion of the fringes depends on the optical path difference
of the two waves and on the phase of the object. The
contrast of the franges (the visibility) is the normalized
Fourier Transform of the object at spatial frequency νi =

ri
λ .

Fig. 2 : Comparison of the probability of reconstruction
of IRLS (for p= 0, 0.5 and 1) to two greedy algorithms.
Greedy algorithms can behave relatively well w.r.t. more
sophisticated optimization approaches while being com-
putationally less complex. We also found that in presence
of noise, OMP-like approaches are more robust to noise
than IRLS.

4 Noise model in phase-
referenced optical interfero-
metry

– In current optical interferometric systems, the phases are
known only through "phase closures". This case is not
considered here.

– In the next few years however, we expect that (noisy)
phases will be provided by the currently developped
phase referencing systems. The phase reference will be
obtained by observing simultaneously a reference star
and a science object. It is possible to estimate the noise
of such an observation on phase and visibility.

– The noise on the observed object phase can be estima-
ted thanks to (see the Annex sheet for details) :

σ2
φ =

N∗R+Nth+Mnpσread/2

(VR(u)NR(λi)/ntel)
2 +

N∗S+Nth+Mnpσread/2

(VS(u)NS(λi)/ntel)
2 + . . .

. . . + σ2
jitterR + σ2

p.
– The noise on the visiblity can be estimated by :

σ2
V is =

N∗+Nth+Mnpσ
2
read

<N>2 + σ2
jitter_on_vis.

Fig. 3 : Simulation example using a configuration of 3 or
4 8m telescopes of VLTI (configuration "A0 G1 K0 (G2)"
at Paranal, Chili). Left : Original (simulated) star field with
S= 20 stars. Right : Example of location of 60 samples of
the frequency spectrum obtained in one observing night.

Fig. 4 : SNR in the data (red) and in the reconstruc-
ted images (blue) and reconstruction probabilities (green)
using OMP for 3 (solid) and 4 (dashed) telescopes at Pa-
ranal. The red curves show that a typical SNR of 5 or so
can be expected for a referencing system with the consi-
dered parameters. The blue curves show that at small S,
the reconstruction algorithm (OMP) acts like a denoiser :
the SNR is higher in the reconstruction images than in the
instrumental data. (Inspection of the reconstructed images
shows that at SNR ≈ 10 original and reconstructed images
can hardly be distinguished.) The green curves show that
reconstructed images can be obtained with lower proba-
bility as S increases (and also indeed as the number of
telescopes is less).

5 Conclusions
This preliminary study points out that for a given SNR in
the data (≈ 5 to 10), images can in principle be recons-
tructed with a higher SNR (10 or more). The possibility of
such a reconstruction is random but can be quantified (de-
pends on Φ and on the support of u).
Several important issues clearly need to be worked out,
as :
- the robustness to noise of the reconstruction algorithm
(e.g. IRLS with sparsity measure Lp, p < 1) ;
- the compromise sophistication vs complexity (Φ has no
particular structure so it is difficult to avoid the natural sca-
ling in M ×N 2 of the problem) ;
- finally the importance of an accurate instrumental model
(noise + data acquisition) is crucial to set-up an efficient
reconstruction method.
Indeed, another crucial point is that for different object
types, different sparsity bases (W 6= I) need to be investi-
gated as well.


