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Reliability of the detection of the acoustic
peaks in the galaxy distribution

Vicent J. Martinez and Enn Saar

We study the reliability of the detection of the baryonic acoustic peak in the galaxy
two-point correlation function at large scales. We have found additional peaks at
very large pair distances (> 200 Mpc/h) in the SDSS LRG data. In order to estimate
the statistical confidence of these peaks, we simulate isotropic Gaussian fields with
an exactly known oscillating correlation function and test the available estimation
methods to see if we can recover the oscillations. We use the turning-band method
to generate the realisations, the usual Landy-Szalay estimator for the correlation
function, and block jackknife-after-bootstrap to describe its sample distribution. We
apply the same methods to the SDSS DR6 LRG data and to the 2dFGRS.




Baryonic Acoustic Oscillations

Prior to the epoch of the recombination, the universe is filled by a plasma
where photons and baryons are coupled. Due to the pressure of photons, sound
speed is relativistic at this time and the sound horizon has a comoving radius
of 150 Mpc. Cosmological fluctuations produce sound waves in this plasma.

At about 380,000 years after the Big Bang, when the temperature has
fallen down to 3000 K, and recombination takes place, the universe loses its
ionized state and neutral gas dominates. At this state, sound speed drops off
abruptly and acoustic oscillations in the fluid become frozen. Their signature
can be detected in both the Cosmic Microwave Background (CMB) radia-
tion and the large-scale distribution of galaxies.

D. Eisenstein, http://cmb.as.arizona.edu/~eisenste/acousticpeak/




Baryon-photon fluid:

c, =c/+/3(1+R)
R=3p,/4p, =0p,/0p,

® Sound speed:
* Before recombination, baryons and radiation form

a fluid undergoing acoustic oscillations.

» After decoupling, baryons are free and have
nearly no pressure, so they fall to the potential
wells of dark matter.

Miralda-Escude




0y =fcs(t) dt/ a(t)

® At the wavelengths ks=jtT, the baryon density
fluctuation is in phase with the dark matter
density fluctuation, and that’s roughly where we
see acoustic peaks in the CMB

Miralda-Escudeé







Acoustic peaks in the CMB
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Baryonic Acoustic Oscillations

| | | |
Q= 0.3 (Qugm = 0.30, €, =0.0 ), 2, =0.7
Q=03 (2ogn = 0.25, @ = 0.05), Q) = 0.7 ~------
Q" = 0.3 (Qagm = 0.15, ©p = 0.15), @) = 0.7 ===+
01 F O\
= o001f 1
\~\\\~ ” ------ \\\
0.001 \\‘~ ~~~~~~~~ ’,/’ \\\\ . _
0.0001 ' | | | | i
20 40 60 80 100 120
r (h"" Mpc)




BAO measured in SDSS data (Eisenstein et al. 2005)

Based on 46,748 “luminous red galaxies” from the SDSS spectroscopic galaxy survey
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Motivation

We have known for several years that additional
oscillations are seen in the galaxy correlation function,

apart from the well-known adiabatic peak at about
100 Mpc/h.

The standard inflation theory with adiabatic perturbations
predicts only one peak, so if the other peaks exist, they
check directly the physics of the inflation stage. The problem
is if these peaks can be considered real.




Landy-Szalay estimator for the correlation function
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The evidence for BO depends

a) on sample selection,

b) on random point sample generation rules,
c) on statistical error estimates.
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We might get the impression that N-Body simulations are better than the real thing.

In the early 1970's people were enthusiastic about a mere 1000 particles (which reproduced the correct two-point
correlation function so it had to be right").

They got even more enthusiastic with a million particles in the 1990's and now it is indeed better than life,
especially with reality enhancing graphics, and ready-to-play in your PowerPoint presentation movies.

Is this enthusiasm justified? N-Body simulations are certainly a success story, and they certainly make
a huge contribution to our understanding of cosmology. The models are nevertheless extremely limited
simply because they lack any real gasdynamics
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Schlather, M., “Introduction to positive definite functions and to unconditional simulation
of random fields” Technical Report ST-99-10.Lancaster University, UK, 1999
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Emery, X., Lantuéjoul, C., “TBSIM: A computer program for
conditional simulation of three-dimensional Gaussian
random fields via the turning bands method”

Computers & Geosciences 32, 1615-1628, 2006.

Our Bessel universe is based on a realization of a (Gaussian) field G(x) with

a covariance C'y. As we want to faithfully represent the large-scale structure of
the field. we use the turning bands method for that; the FF'T method usually
used In astronomy has a bad resolution at large scales and does not generate
isotropic fields. We turn this Gaussian field into density by the exponential
transform:

p(z) = exp(G(2)).
This gives us a density field that is everywhere positive and has the correlation
function

Ep(r) = exp(Cy(r)).







Populating the density field with a Cox

process
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Block Jackknife covariances

We test this block jackknife approach in our Bessel Universes — we can calculate the
block jackknife (';; and compare it with the (;; obtained using different realizations
of the point process.

We divided our universe into eight octants:




The covariance matrix of the correlation function
is estimated as

N-1& .
Cut(rn) =~ 3 (€l = Erw)) (&) — Erv))

i=1

where &(7y,) is the mean of the IV correlation functions for the bin 7.

There is no proof that this estimate should mean anything;
its only virtue is that it can be calculated. The covariance
matrix is important, for example, if we want to fit
correlation function with a theoretical one, to estimate

parameters of theory, etc. If it is wrong, the fit will be
wrong.
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Covariances for the LRG case: left panel — different realizations, right panel — single
realization, block jackknife.

Let us compare now the normalized covariance matrices; this trick shows better the
structure of the matrix:
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Normalized covariances for the LRG case: left panel — different realizations, right
panel — single realization, block jackknife.
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Some conclusions...

C1 . The clear conclusion is that block jackknife is a bad method for correlation function
covariances. The covariances found this way are too large, and the covariance matrix

has large off-diagonal values.

Better methods should be found; maybe we shall have them by ADAG; tests are in progress!

C2. We have seen that the point samples reproduce the smooth density (at least its corrs. fun.)
very well.

C3. The last slide shows that corr. fun. variations between realizations (density fields) are much
larger -- the real structure of a universe (realization) depends on the algorithm (physical process)
that generates the realization.

Some thoughts...

T1. Maybe we have got a bad realization -- an example is the low quadrupole amplitude
of the CMB spectrum or the cold spot.

T2. So far we assume that the realization (universe) is ideal, but it assumes some unknown
algorithm that generates the realization.

T3. Information about early physics can be obtained by comparing the realization with
the ideal physical process by means of corrs. funcs, etc.). Of course, if our present picture of the
initial Gaussian field is true...




