

# Nonparametric Estimation of CMB Foreground Emission

P. E. Freeman, C. R. Genovese, & L. Wasserman Department of Statistics - Carnegie Mellon University





# "The main goal of this paper is to remove foregrounds, not to understand or model them."

- Tegmark, de Oliveira-Costa, & Hamilton (2003)



#### Context: Simultaneous Inference

- Nonparametric foreground estimation is one piece of a simultaneous inference scheme:
  - 1. Assume the CMB to be a realization of a Gaussian random field.
  - 2. Nonparametrically estimate the unknown foreground function f given a CMB power spectrum  $\{C_l\}$ .
  - 3. Use residual maps to inform movement from  $\{C_l\} \rightarrow \{C_l'\}$ .
  - 4. . . . and determine the  $\{C_l\}$  that maximizes the likelihood.



#### Nonparametric Statistics: Basics

- The goal is to make sharp inferences about an unknown function with minimal assumptions.
- Useful when a parametric model for the function is complex and a simpler nonparametric model may have similar inferential power.
- The name is a misnomer: nonparametric methods feature infinite-dimensional parameters (e.g., basis coefficients), that are further resolved with increasing data.



### Nonparametric Foreground Estimation

Our nonparametric regression problem:

$$T(\theta, \phi) = f(\theta, \phi) + \epsilon(\theta, \phi; C_l)$$

- Here,  $f(\theta, \Phi)$  is the unknown, true foreground, while  $\epsilon(\theta, \Phi; C_l)$  is the "noise," consisting of both CMB signal and pixel noise.
- We expand *f* into the needlet basis (or frame):

$$f = \sum_{jk} \beta_{jk} \Psi_{jk}$$



#### **Needlet Function**

• The needlet function is:

$$\Psi_{jk}(\theta,\phi) = \sqrt{2\pi\lambda_{jk}} \sum_{lm} b\left(\frac{l}{B^j}\right) Y_{lm}^*(\theta,\phi) Y_{lm}(\xi_{jk})$$

#### where

(j,k): frequency and spatial pixel indices

(l, m): multipole and phase indices

 $(\xi_{jk}, \lambda_{jk})$ : cubature points and weights (GLESP; e.g., Doroshkevich et al. 2005)

B: multipole localization parameter  $(l \in [B^{j-1}, B^{j+1}])$ 

 $b(\cdot)$ : window function (e.g., Marinucci et al. 2007)

 $Y_{lm}(\cdot)$ : spherical harmonic function



$$j = 1 \qquad l \in [1, 4]$$



$$B = 2$$
  $j = 2$   $l \in [2, 8]$ 







$$j = 4$$
  $l \in [8, 32]$ 



### Algorithm

- Decompose full-sky map T into coefficients  $\hat{a}_{lm}$ .
- Compute needlet coefficients:

$$\hat{\beta}_{jk} = \sqrt{2\pi\lambda_{jk}} \sum_{lm} b\left(\frac{l}{B^j}\right) Y_{lm}(\xi_{jk}) \hat{a}_{lm}$$

- Estimate shrinkage coefficients  $\hat{\mu}_{jk}(\hat{\beta})$
- Transform back to spherical harmonic space:

$$\hat{a}_{lm}^{FG} = \sum_{jk} \sqrt{2\pi\lambda_{jk}} b\left(\frac{l}{B^{j}}\right) Y_{lm}^{*}(\xi_{jk}) \hat{\mu}_{jk}(\hat{\beta}) \hat{\beta}_{jk}$$



#### Tested Shrinkage Procedure

We test shrinkage via hard thresholding:

$$\hat{\mu}_{jk}(\hat{\beta}) = \begin{cases} 1 & \text{if } |\hat{\beta}_{jk}/\sigma_{\beta_{jk}}| \ge t_j \\ 0 & \text{if } |\hat{\beta}_{jk}/\sigma_{\beta_{jk}}| < t_j \end{cases}$$

where  $\sigma$  is a function of the assumed  $\{C_l\}$ .

• A simplistic shrinkage procedure, but: if foreground is nearly sparse in the needlets representation, we may achieve identifiability.



#### Tested Shrinkage Procedure

• For a given  $\{C_l\}$ , we would estimate the optimal thresholds  $t_j$  by minimizing the mean-squared error (MSE), estimated by computing the bias B and variance V of estimates  $\hat{f}$ :

$$MSE(f, \hat{f}, t_j) = B^2(f, \hat{f}, t_j) + V(f, \hat{f}, t_j)$$

- This requires computationally intensive simulations.
- Instead we simulate the distribution of the maximum of  $\hat{\beta}_{jk}/\sigma_{\beta jk}$ ; then  $t_j = t_j(\alpha)$ .



#### Results: WMAP 5YR Data

- We estimate diffuse foregrounds in all five WMAP bands, given the best-fit  $\Lambda$ CDM  $C_l$ .
  - We co-add data in each band over DA and year with inverse-variance noise weighting.
  - We set B = 2 and examine frequencies j = [1,...,6]. (We use j = 0 needlets to remove the dipole components of the foregrounds.) Thus we have full needlet function coverage over the multipole range  $l = 2 \rightarrow 64$ .
  - We ignore pixel noise in the selection of thresholds.





# Caveat: Strong Radio Point Sources



Issue:
our current
statistical procedure
is sensitive to strong
radio point sources.

Q Band

(cf. Abrial et al., arXiv:0804.1295)



# Foreground Estimates







V





#### **CMB** Estimates







## **Sparsity Drives Identifiability**



FG sparse in needlet representation at high *l*.



#### **Future Work**

- Our prototype nonparametric shrinkage procedure shows great promise in being able to separate components in an identifiable manner.
- We will develop a more powerful statistical procedure in which we will build in constraints that, e.g., deal with strong radio sources, while remaining computationally efficient.