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“The main goal of this paper is to
remove foregrounds, not to
understand or model them.”

- Tegmark, de Oliveira-Costa, & Hamilton (2003)




Context: Simultaneous Inference

® Nonparametric foreground estimation is one piece
of a simultaneous inference scheme:

1. Assume the CMB to be a realization of a Gaussian random
field.

2. Nonparametrically estimate the unknown foreground
function f given a CMB power spectrum {Cj}.

3. Use residual maps to inform movement from {C;} = {C/}.

4. ...and determine the {C;} that maximizes the likelihood.




Nonparametric Statistics: Basics

* The goal is to make sharp inferences about an
unknown function with minimal assumptions.

® Useful when a parametric model for the function is
complex and a simpler nonparametric model may
have similar inferential power.

* The name is a misnomer: nonparametric methods
feature infinite-dimensional parameters (e.g., basis
coefficients), that are further resolved with
increasing data.




Nonparametric Foreground Estimation
* Our nonparametric regression problem:
T(0,¢) = f(0,9)+ e, ¢;C)

* Here, f(0,9) is the unknown, true foreground,
while €(0,®;C)) is the “noise,” consisting of both
CMB signal and pixel noise.

* We expand f into the needlet basis (or frame):
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Needlet Function

® The needlet function is:
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where
(7,k): frequency and spatial pixel indices

(I, m): multipole and phase indices

(&K, \ji): cubature points and weights (GLESP; e.g., Doroshkevich et al. 2005)
B: multipole localization parameter (I € [B’~!, B/T1])

b(-): window function (e.g., Marinucci et al. 2007)

Yim(+): spherical harmonic function







Algorithm

® Decompose full-sky map T into coefficients .

® Compute needlet coefficients:

O = \/QW/\ijb(é) Yim (&) Qim

N

® Estimate shrinkage coefficients p(B)

® Transform back to spherical harmonic space:

By = ZMb( ) v (&3t ) 13 (B) B




Tested Shrinkage Procedure

® We test shrinkage via hard thresholding:

(

e 1 if |8 /o6, | > ¢
fi(B) = § . . Djil O] 2 1
§ 0 lf ﬁjk/gﬁjk <tj

where O is a function of the assumed {C;}.

® A simplistic shrinkage procedure, but: it
foreground is nearly sparse in the needlets
representation, we may achieve identifiability.




Tested Shrinkage Procedure

® For a given {Cj}, we would estimate the optimal
thresholds #; by minimizing the mean-squared error
(MSE), estimated by computing the bias B and
variance V of estimates f:

MSE(f, f.t;) = B(f, f,t.) + V([ f.t,)

® This requires computationally intensive simulations.

® [nstead we sirpulate the distribution of the
maximum of Bir/ Ogi; then t; = t(0).




Results: WMAP 5YR Data

® We estimate diffuse foregrounds in all five
WMAP bands, given the best-fit ACDM C..

® We co-add data in each band over DA and year with
inverse-variance noise weighting.

® We set B =2 and examine frequencies j = [1,...,6]. (We
use j = 0needlets to remove the dipole components of
the foregrounds.) Thus we have full needlet function
coverage over the multipole range [ = 2 — 64.

® We ignore pixel noise in the selection of thresholds.




Issue:
our current
statistical procedure
1S sensitive to strong
radio point sources.
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Foreground Estimates

(Standardized T: —10 — 30)
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Sparsity Drives Identifiability
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Future Work

® Our prototype nonparametric shrinkage procedure
shows great promise in being able to separate
components in an identifiable manner.

® We will develop a more powerful statistical
procedure in which we will build in constraints
that, e.g., deal with strong radio sources, while
remaining computationally efficient.




