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• Most obvious example: standard CMB data analysis pipeline

• But many others: object detection, signal enlargement, signal 
separation, …

Inverse Problems & CosmologyInverse Problems & Cosmology



BayesianBayesian InferenceInference

Definition: “an approach to 
statistics in which all forms of 
uncertainty are expressed in 
terms of probability” (Radford 
M. Neal)



TheThe BayesianBayesian WayWay



Likelihood• Bayes’ Theorem

• Model Selection
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• Priors and posteriors are often complex distributions

• May not be easily represented as formulas

• Represent the distribution by drawing random samples from it
– Visualize these samples by viewing them or low-dimensional 

projections of them
– Make Monte Carlo estimates for their probabilities and 

expectations

• Sampling from the prior is often easy, sampling from the posterior, 
difficult

BayesianBayesian ComputationComputation



• Some are nice, others are nasty

• Maximization (local or global) and covariance matrices → partial information
→ better to sample from the posterior using MCMC

Some Cosmological PosteriorsSome Cosmological Posteriors



• Evidence =

• Evaluations of the n-dimensional integral presents great numerical challenge

• If dimension n of parameter space is small, calculate unnormalized posterior
over grid in parameter space → get evidence trivially

• For higher-dimensional problems, this approach rapidly becomes impossible
– Need to find alternative methods
– Gaussian approximation, Savage-Dickey ratio

• Evidence evaluation at least an order of magnitude more costly than parameter 
estimation.
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NestedNested SamplingSampling

• Introduced by John Skilling in 2004.

• Monte Carlo technique for efficient evaluation of 
the Bayesian Evidence.

• Re-parameterize the integral with the prior mass X
defined as,

• X defined such that it uniquely specifies the 
likelihood

• Suppose we can evaluate Lj = L(Xj) where 
0 < Xm < … <X2 < X1 < 1 then 

where wj = (Xj-1 – Xj+1)/2
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1. Set j = 0; initially X0 = 1, Z = 0
2. Sample N ‘live’ points uniformly inside the initial prior 

space (X0 = 1) and calculate their likelihoods
3. Set  j = j + 1
4. Find the point with the lowest Li and remove it from the 

list of ‘live’ points
5. Increment the evidence as 

Z = Z + Li ( Xi-1 - Xi+1 ) / 2
6. Reduce the prior volume Xi / Xi-1 = ti where 

P(t) = N tN-1

7. Replace the rejected point with a new point sampled 
from          with hard-edged region L > Li

8. If                      then set
stop else goto 3 
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• Bulk of posterior around X e-H where H is the information

• Since                                   , we expect the procedure to take 
steps to shrink down the bulk of posterior

• Dominant uncertainty in Z is due to the Poisson variability in the number of 
steps,                      , required to reach the bulk of posterior

• log Xi and log Z are subject to standard deviation uncertainty of 
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NestedNested Sampling: DemonstrationSampling: Demonstration

Egg-Box Posterior



NestedNested Sampling: DemonstrationSampling: Demonstration

Egg-Box Posterior
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NestedNested SamplingSampling

• Advantages:
– Typically requires around 100 times fewer samples than thermodynamic 

integration for evidence calculation
– Does not get stuck at phase changes 
– Parallelization possible if efficiency is known

• Bonus: posterior samples easily obtained as by-product.
Take full sequence of rejected points, θi, & weigh ith

sample by pi = Liwi/Z

• Problem: must sample efficiently from prior within
complicated, hard-edged likelihood constraint. MCMC
can be inefficient



• Mukherjee et al. (2006) introduced ellipsoidal bound for the remaining
prior volume with hard constraint, L > Li, at each iteration

• Construct an n-dimensional ellipsoid using the covariance matrix of 
the current live points

• Enlarge this ellipsoid by some enlargement factor ( f)

• Easily extendable to multi-modal problems through clustering

EllipsoidalEllipsoidal NestedNested SamplingSampling



……Ellipsoidal Nested SamplingEllipsoidal Nested Sampling



……Ellipsoidal Nested SamplingEllipsoidal Nested Sampling



……EllipsoidalEllipsoidal NestedNested SamplingSampling -- ProblemsProblems



……Ellipsoidal Nested Sampling Ellipsoidal Nested Sampling -- SolutionSolution



• Introduced by Feroz & Hobson (2007) (arXiv:0704:3704)
• Improvements over recursive ellipsoidal nested sampling

– Non-recursive so requires fewer likelihood evaluations in multimodal
problems

– Identify the number of clusters using X-means
– Can use ellipsoidal, Metropolis or any other sampling method to sample 

from the hard constraint
– Evaluation of ‘local’ as well as ‘global’ evidence values

Simultaneous Nested SamplingSimultaneous Nested Sampling



• Infer appropriate number of clusters from the current live point set using X-
means (Pelleg et al. 2000)

• X-means: partition into the number of clusters that optimizes the Bayesian 
Information Criteria (BIC)

• X-means performs well overall but has some inconsistencies

Identification of ClustersIdentification of Clusters



– In simultaneous nested sampling, if a cluster is non-intersecting with its 
sibling and non-ancestor clusters, it is added to the list of ‘isolated’
clusters

– Sum the evidence contributions from the rejected points inside this 
‘isolated’ cluster to the local evidence of the corresponding mode

– Underestimated local evidence of the modes that are sufficiently close
Store information about clusters of the past few iterations
Match the ‘isolated’ clusters with the ones at the past iterations and 
increment its local evidence if the rejected points in those iteration 
fall into its matched clusters

Evaluation of Evaluation of ‘‘LocalLocal’’ EvidencesEvidences



• k clusters at iteration i with n1, n2, … , nk points  and V1, V2, … , Vk volumes of 
the corresponding (enlarged) ellipsoids

• Choose an ellipsoid with probability
pk = Vk / Vtot, where

• Sample from the chosen ellipsoid with the 
hard constraint L > Li

• Find the number n, of ellipsoids the chosen sample lies and accept the sample 
with probability 1 / n
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Sampling from Overlapping EllipsoidsSampling from Overlapping Ellipsoids



• One ellipsoid is a very bad approximation to a banana
shaped likelihood region

• Sub-cluster every cluster found by X-means

• Minimum number of points in each 
sub-cluster being ( D + 1 ) with D being the 
dimensionality of the problem

• Expand these sub-clusters by sharing 
points with neighboring sub-clusters

• Sample from them using the strategy outlined in previous section

Dealing with Dealing with DegeneraciesDegeneracies



• Replace ellipsoidal sampling in simultaneous ellipsoidal nested sampling by 
Metropolis-Hastings method

• Proposal distribution: Isotropic Gaussian with fixed width, , during a nested 
sampling iteration

• At each iteration, pick one of N live points randomly as the starting position 
for random walk

• Take ns (=20) steps from the starting point with each new sample, x’, being 
accepted if L(x’) > Li. 

• Adjust after every nested sampling iteration to maintain the acceptance rate
around 50%

σ

σ

Metropolis Nested Sampling (MNS)Metropolis Nested Sampling (MNS)



• Posterior defined as
where

• Typical of degeneracies in many beyond-the-Standard-Model parameter space 
scans in Particle Physics

Example: Gaussian ShellsExample: Gaussian Shells
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• w1 = w2 = 0.1, r1 = r2 = 2, c1 = (-3.5,0.0), c2 = (3.5,0.0)

• Analytical Results: log Z = -1.75, log Z1 = -2.44, log Z2 = -2.44

• Ellipsoidal & Metropolis Nested Sampling with Nlike ~ 20,000
log Z = -1.78 ± 0.08, log Z1 = -2.49 ± 0.09, log Z2 = -2.47 ± 0.09

• Bank sampler (modified Metropolis-Hastings, arXiv:0705.0486) required 
Nlike ~ 1 x 106, for parameter estimation and no  evidence evaluation

Gaussian Shells in 2D: ResultsGaussian Shells in 2D: Results



2,091,314-256.7 ± 0.8-254.4 ± 0.8-254.2 ± 0.8-255.3-255.6100
1,328,012-170.7 ± 0.7-167.7 ± 0.6-167.5 ± 0.6-168.9-168.270

857,937-113.0 ± 0.5-112.9 ± 0.5-112.2 ± 0.5-113.1-112.450
489,416-61.3 ± 0.5-60.4 ± 0.5-60.1 ± 0.5-60.8-60.130
127,463-15.3 ± 0.2-15.4 ± 0.2-14.6 ± 0.2-15.3-14.610

Nlikelocal 
log Z2

local 
log Z1

log Zlocal 
log Z*

log Zdim

Metropolis Nested SamplingAnalytical

*analytically local log Z1 = local log Z2 = local log Z

Gaussian Shells Gaussian Shells uptoupto 100D: Results100D: Results



• Main Problems:

– Parameter estimation

– Model comparison

– Quantification of detection

Application: Astronomical Object DetectionApplication: Astronomical Object Detection



•

• H0 = “there is no cluster with its center lying in the region S”
• H1 = “there is one cluster with its center lying in the region S”

•

• For clusters distributed according to Poisson distribution 
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Quantifying Cluster DetectionQuantifying Cluster Detection



unlensed galaxies lensed galaxiesprojected mass with shear map 
overlaid

Weak Gravitational Weak Gravitational LensingLensing



• 0.5 X 0.5 degree2, 100 gal per arcmin2 & σ = 0.3

• Concordance ΛCDM Cosmology with cluster mass & redshifts
drawn from Press-Schechter mass function

true convergence map noisy convergence map inferred convergence map

Wide Field Weak Gravitational Wide Field Weak Gravitational LensingLensing



• Produced by Martin White, 2005
• Covering 3 X 3 degree2

• Concordance ΛCDM Cosmology
• 65 galaxies per arcmin2

• σ = 0.3
• 1350 halos with M200 > 1013.5 h-1 Msun

Wide Field Wide Field LensingLensing: Application to N: Application to N--Body SimulationsBody Simulations



• 146 positive detections of which 131 are true
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((In)completenessIn)completeness of Weak of Weak LensingLensing



• Most popular realization of MSSM with universal boundary conditions

• 5 mSUGRA parameters                                                     + Standard Model 
parameters

• Allanach et al. performed the bank sampler analysis → parameter constraints

• Bayesian evidence based model comparison vital for analyzing models of 
SUSY breaking at low energies using LHC data

Bayesian Analysis of Bayesian Analysis of mSUGRAmSUGRA
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Feroz et al. in preparation

Bayesian Analysis of Bayesian Analysis of mSUGRAmSUGRA: Results: Results

Allanach et al, arXiv:07050487
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• Bayesian framework provides unified approach with 2 levels of inference
– parameter estimation and confidence limits by maximising or exploring 

posterior
– model selection by integrating posterior to obtain evidence

• Nested sampling efficient in both evidence evaluation and parameter 
estimation

– main issue is sampling from prior within hard likelihood constraint
– MCMC and ellipsoidal bound methods promising
– clustering allows sampling from multimodal/degenerate posteriors

• Many cosmological and particle physics applications – so try it for yourself!

ConclusionsConclusions



• Assume a mass profile & fit 
for shear as a function of 
source photometric redshift

• How reliable is this 
technique?

Cluster TomographyCluster Tomography

spectroscopic
redshift

Wittman et al., 2001



Weak Weak LensingLensing: Parameter Constraints: Parameter Constraints
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Weak Weak LensingLensing: Parameter Constraints: Parameter Constraints
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• Metropolis-Hastings algorithm to sample from P(θ)
– Start at an arbitrary point θ0

– At each step, draw a trial point, θ’, from the 
proposal distribution Q(θ’│θ0)

– Calculate ratio r = P(θ’) Q(θn│θ’) / P(θn) Q(θ’│θn)
– accept θn+1 = θ’ with probability max(1,r) else set

θn+1 = θn

Metropolis Hastings AlgorithmMetropolis Hastings Algorithm

• After initial burn-in period, any (positive) proposal Q → convergence to P(θ)

• Common choice of Q, multivariate Gaussian centred on θn but many others



• Choice of proposal Q strongly affects convergence rate
and sampling efficiency

– large proposal width ε→ trial points rarely accepted
– small proposal width ε→ chain explores P(θ) by a 

random walk → very slow
• If largest scale of P(θ) is L, typical diffusion time 

t ~ (L/ ε)2

• If smallest scale of P(θ) is l, need ε ~ l, diffusion time 
t ~ (L/ l)2

• Particularly bad for multimodal distributions
– Transitions between distant modes very rare
– No one choice of proposal width ε works
– Standard convergence tests will suggest 

convergence, but actually only true in a subset of
modes

Metropolis Hastings Algorithm Metropolis Hastings Algorithm –– Some ProblemsSome Problems



Thermodynamic IntegrationThermodynamic Integration

• MCMC sampling (with annealing) from full posterior requires no assumptions 
regarding hypotheses or priors

• Basic method is thermodynamic integration: define
so the required evidence value is Z(1)

• Begin MCMC sampling from                          , starting with     = 0 then slowly 
raising the value according to some annealing schedule until     = 1.

• Use the Ns samples corresponding to any particular value of     to obtain an 
estimate of the quantity 

• But 
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•Let                     : prior mass
•As                   , annealing 
should track along the curve 
•But
so annealing schedule can not 
navigate through convex 
regions (phase changes) 

• Problems:
– Evidence value stochastic, need multiple runs to estimate the error on the 

evidence
– Accurate evidence evaluation requires slow annealing
– Common schedules (linear, geometric) can get stuck in local maxima
– Can not navigate through phase changes

θπddX =
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λ/1log/log −=XdLd

……Thermodynamic IntegrationThermodynamic Integration


