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Astronomical observational parameter space

Along each axis the measurements are characterized by the position, extent, sampling and 
resolution. From a mathematical point of view any observation is just a point or a manifold in 
RN (with metrics that might be not euclidean.)
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Polarization

Wavelength
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Not E.M.

Time

Proper
Motion

All astronomical measurements span some volume in 
this parameter space. Until now, discoveries were made 
along some of these axes or in little projected regions of the 
space, but now new tools and techniques are available.

(Credit: G. Djorgvski)
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Computing power is a finite resource:

Dimensionality reduction and\or 
algorithm optimization are needed.

Data Mining algorithms scale very badly:

Clustering ~  N log(N) x N2,  ~ D2

Correlations ~  N log(N) x N2,  ~ Dk  (k ≥ 1)
Bayesian Likelihood ~ Nm (m ≥ 3),  ~  Dk  (k ≥ 1)

Tools for astronomy
Clustering & pattern recognition (e.g. structure selection 
in both real and parameter space)
Classification (e.g. star/galaxy classification, AGNs 
selection)
Regression (e.g. photometric redshift)

Potential for 
discovery

Nobj  (data volume)

N2surveys (connections)[  Big surveys

 Data federation[
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The strategy for QSOs and AGNs selection
The scientific start-up: only a small fraction of the QSOs predicted by models and X-ray 
observations are found in optical and infrared surveys. Data mining techniques can be 
used to exploit both the abundance of optical\infrared data and the accuracy and windows 
opened by other-than-optical observations.

In addition, QSOs identification and AGNs classification are complex topics which offer a 
challenge for the effectiveness of data mining algorithms in astronomy. 

• QSOs identification: to avoid the risk of loosing objects due to 
misleading or incomplete classification schemes, unsupervised 
approaches are to be preferred (by-product: serendipitous discovery 
of outliers and rare objects). 

• AGNs classification: a more classical selection algorithm learning 
how to classify AGNs “by example” can  be applied to this kind of 
problem. The efficiency of selection depends on the parameters and 
the BoK chosen for the training.
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Completeness

Efficiency

Overall performances of a generic targeting algorithm are expressed 
by two parameters:

Several algorithms for “general purpose” photometric identification of candidate 
QSOs select sources according to different techniques exist.

•  Optical surveys: looking for counterparts of strong radio sources (but only ∼ 
10% of QSO are radio-loud).

•  Ultraviolet and optical surveys: looking for star-like sources bluer than stars.

•  Multi-colour surveys: looking for star-like objects in colour parameter space 
lying outside compact regions (“star locus”) occupied by stars. 

Photometric selection of QSOs

Astronomical Data Analysis V - Heraklion 9/5/08



Completeness

Efficiency

Overall performances of a generic targeting algorithm are expressed 
by two parameters:

Several algorithms for “general purpose” photometric identification of candidate 
QSOs select sources according to different techniques exist.

•  Optical surveys: looking for counterparts of strong radio sources (but only ∼ 
10% of QSO are radio-loud).

•  Ultraviolet and optical surveys: looking for star-like sources bluer than stars.

•  Multi-colour surveys: looking for star-like objects in colour parameter space 
lying outside compact regions (“star locus”) occupied by stars. 

Not used anymore (in general)

Photometric selection of QSOs

Astronomical Data Analysis V - Heraklion 9/5/08



Completeness

Efficiency

Overall performances of a generic targeting algorithm are expressed 
by two parameters:

Several algorithms for “general purpose” photometric identification of candidate 
QSOs select sources according to different techniques exist.

•  Optical surveys: looking for counterparts of strong radio sources (but only ∼ 
10% of QSO are radio-loud).

•  Ultraviolet and optical surveys: looking for star-like sources bluer than stars.

•  Multi-colour surveys: looking for star-like objects in colour parameter space 
lying outside compact regions (“star locus”) occupied by stars. 

Not used anymore (in general)
Good

Photometric selection of QSOs

Astronomical Data Analysis V - Heraklion 9/5/08



Completeness

Efficiency
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Photometric selection of QSOs
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SDSS QSO candidate selection algorithm [Richards et al. 2002] targets star-like objects as 
QSO candidate according to their position in the SDSS colours space (u-g,g-r,r-i,i-z), if one 
of these requirements is satisfied: 

‣ QSOs are supposed to be 
p l a c e d > 4 σ f a r f r o m a 
cylindrical region containing 
the “stellar locus” (S.L.), where 
σ depends on photometric errors.

‣ QSOs are supposed to be 
placed inside the inclusion 
regions, even if not meeting the 
previous requirement.

c = 95%,  e = 65% 
(integrated) 

SDSS QSOs targeting algorithm (I)

OR
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SDSS QSOs targeting algorithm (II)

1.  Defined as inclusion regions are regions where S.L. meets QSOʼs area (due to 
absorption from Lyα forest entering the SDSS filters, which change continuum power 
spectrum power law spectral index). All objects in these areas are selected so to 
sample the [2.2, 3.0] redshift range (where QSO density is also declining), but at the 
cost of a worse efficiency [Richards et al. 2001]. 

2.  Defined as exclusion regions are those regions outside the main “stellar locus” 
clearly populated by stars only (usually WDs). All objects in these regions are 
discarded.
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Our candidate QSO selection algorithm is based on unsupervised clustering inside 
colours space and exploits mixed (spectroscopic+photometric) datasets. Once clusters 
have been somehow detected, knowledge-base (spectroscopic types) is used (i.e., “labels” 
associated to objects within each cluster) to understand the mixture of objects contained in 
each cluster and to perform a statistical analysis.

Clustering 
algorithms

Parameter space Parameter space
with clusters

Parameter space
with “labelled” 

clusters 

Unsupervised clustering for QSOs
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A high number of initial latent bases (i.e. clusters from PPS) is good for almost all 
applications (empty clusters, if any, can be discarded); critical values for Dth are classically 
determined by two similar methods both embodying a stability criterion: 

The algorithm as a whole

1.  Pre-clustering algorithm: this phase can be accomplished performing a reduction of 
dimension of the feature space; this reduction via feature extraction/selection can be 
supervised or unsupervised (our choice in unsupervised).

2.  Agglomerative clustering: both distance definition and a linkage model (simple, 
average, complete, Wards, etc.) need to be provided to perform clustering.

Clustering is usually performed on single objects, but this approach may be too sensitive 
to single outliers to be extensively used in highly non linear parameter space as astronomical 
ones. We perform a pre-clustering on the real distribution of points inside the parameter 
space, and then used a clustering algorithm to aggregate the pre-clusters produced.

1.  Plateau analysis: final number of clusters N(D) is calculated over a large interval of D, 
and  critical value(s) Dth are those for which a plateau is visible. 

2.  Dendrogram analysis: the stability threshold(s) Dth can be determined observing the 
number of branches at different levels of the graph. 
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1.  PPS determines a large number of distinct groups of objects: nearby clusters in the 
colours space are mapped onto the surface of a sphere.

2.  NEC aggregates clusters from PPS to a (a-priori unknown) number of final clusters. 

3.These clusters are examined and “interesting” ones are selected through the Base of 
knowledge.

Two free parameters to be set are the number of latent variables 
for PPS (“resolution” of the initial clustering) and the critical value(s) 
of dissimilarity threshold Dth for NEC.
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applications (empty clusters, if any, can be discarded); critical values for Dth are classically 
determined by two similar methods both embodying a stability criterion: 
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Unsupervised clustering for QSOs

Astronomical Data Analysis V - Heraklion 9/5/08

The Probabilistic Principal Surfaces model [Chang 
2000] belongs to the family of the so called “latent 
variables” methods and can be regarded as an 
extension of the Generative Topographic 
Mapping.

p(t, x) = p(x) p(t |x) 

y(x; y) defines a manifold in the data space 
given by the image of the latent space.

PPS

NEC
Unsupervised clustering method based on 
“negative entropy”, an inverse measure of 
the gaussianity of a distribution. 

NegE(A ∪ B) < NegE(A) + NegE(B)
NegE(A ∪ B) < Dth

t = y(x; y) + u 

For each couple of contiguous clusters A 
and B in the sample, these two relations 
are checked. Iff at least one is true, A and 
B are replaced by C = A ∪ B.



Once partition of colours space is completed (as a function of Dth), 
clusters mainly populated by QSOs (according to the knowledge-base 
at our disposal) are selected and informations about these clusters 
are exploited for selection of QSOs candidates. 

To determine the critical dissimilarity Dth threshold we rely not only on a stability requirement. 

The process is recursive: feeding merged unsuccessful clusters in the clustering pipeline until 
no other successful clusters are found. The overall efficiency of the process etot is the sum of 
weighed efficiencies ei for each generation: 

we ask Dth to maximise the Normalised Success Ratio (NSR):

[ ]cluster is “successful” [ ]its fraction of confirmed QSO 
is higher then a fixed value

Def

Tuning of the method
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‣ “Re-labelling”: both spectroscopic and 
photometric objects put into the same 
clustering process: candidate QSOs are 
selected as those objects belonging to 
clusters where spectroscopic confirmed 
QSOs (“tracers”) are found.
‣ “Photometric cuts”: “goal-successful” 
clusters are described in terms of their 
colours distribution; associated cuts are 
appl ied to photometr ic sample for 
candidate selection. 
‣ “Mahalanobisʼ distance”: it is used to 
measure the distances of a given 
photometric object from each cluster; the 
object is assigned to the nearest “goal-
successful cluster” or rejected.

i-th generation of clustering

No

Yes

Selection of new candidates
Different methods for the 

extraction of QSOs candidates
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u - g vs g - r

Comparison with a colour-colour plot
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Confirmed not−QSOs
Confirmed QSOs

In this experiment the clustering has been performed on a sample of stellar objects 
observed in optical and infrared observations, but using only optical colours. The BoK is 
the SDSS spectral classification index “specClass”.

Only a fraction (43%) of these 
objects have been selected as 
candidate QSOs by SDSS 
target ing a lgor i thm : the 
remaining sources have been 
included in other spectroscopic 
programmes (mainly stars and 
galaxy).
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Exp 3: local values of e and c
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∗ [D’A. et al., submitted to MNRAS.]

Results (I)*
Sample Parameters Labels etot ctot ngen nsuc_clus

Optical
SDSS QSOs 
candidates

4 optical colours ʻspecClassʼ 83.4 %

(± 0.3 %)

89.6 %

(± 0.6 %)

2

(3,0)

Optical + 
NIR 

star-like 
objects

4 optical colours 
+ 3 infrared 

colours

 

ʻspecClassʼ 91.3 %

(± 0.5 %)

90.8 %

(± 0.5 %)

3

(3,1,0)

Optical + 
NIR 

star-like 
objects

4 optical colours ʻspecClassʼ 92.6 %

(± 0.4 %)

91.4 %

(± 0.6 %)

3

(3,0,1)
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Classification of Active Galactic Nuclei
Most galaxy classifications are based on morphological informations, which only partly reflect 
the physical differences between different class of objects. One clear example is represented 
by galaxies containing AGNs, which do not fit comfortably inside any morphological 
classification known (except weak correlations).

Selection of active of galaxies in terms of a 
minimal set of spectroscopic and 
photometric parameters embodying the 
physical differences of their nuclei as 
closely as possible.

A combination of unsupervised and 
supervised classification methods might 
work also in this case...

The complex and more general 
p r o b l e m o f t h e p h y s i c a l 
c lassificat ion of galaxies 
lurking in the darkness...
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In a suitable parameter space (photometric space), a neural network is trained on a 
subsample of objects with reliable classification (“targets”). This trained network is used to 
select photometric candidates.

For photometric redshift data mining reduces to interpolation, and NNs are best 
interpolators. This approach exploits the existence of a “knowledge base”, i.e. of subsample 
of the data for which spectroscopic redshift are available, to be set as priors.

NNs

Knowledge base

Parameters + Target

Dataset

Parameters only 

Training, Validation, Test 

Classifying with NNs
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In a suitable parameter space (photometric space), a neural network is trained on a 
subsample of objects with reliable classification (“targets”). This trained network is used to 
select photometric candidates.

For photometric redshift data mining reduces to interpolation, and NNs are best 
interpolators. This approach exploits the existence of a “knowledge base”, i.e. of subsample 
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Dataset  
Accuracy of the classification 

estimated by comparison
with the knowledge base

Photometric
candidates

Knowledge base

Classifying with NNs
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Support Vector Machine
Support vector machines (SVMs) [Bennet & Campbell 2000] are a set of related 
supervised learning methods used for classification and regression.
SVMs map input vectors to a higher dimensional space where a maximal separating 
hyper-plane is constructed. The “kernel function” of the SVM in the “C-Support Vector 
Classification” implementation [Boser et al. 1992], depends on two parameters, one in the 
model (C) and the other in the “kernel function” (γ):
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SVM parameter space exploration strategy

The sampling strategy of the 2-dim parameter plane (γ, C) for the SVM (proposed by [Hsu 
et al. ]) consists in running different jobs on a grid whose knots are spaced by a factor 4 on 
both parameters (γ = 2−15, 2−13…23, C = 2−5, 2−3, ...215).

Cross-validation of results and “folding” (5 subsets) of the dataset are used for all 
experiments.

The SVM experiments for different couples of values of the parameters (γ, C) have been 
run on a 112 knots grid infrastructure of the SCOPE Virtual Organization.

Grid
computing

Heavy computing tasks, mainly 
independent and parallelization-prone 
(according to the “batch-parameter” 
paradigm).
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log2(C)

log2(γ)
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A 2-dim BoK (I)
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Kauffmanʼs line

Kewleyʼs line

Heckmanʼs line

Diagnostics plots based on spectroscopic observables are useful to disentangle AGNs from 
other galaxies: the luminosity of the [OIII]λ5007 emission line is a tracer of the strength of 
activity in the nuclear region, so A BPT plot [Baldwin et al. 1981] based on the emission lines 
flux ratios OIII/Hβ ratios  NII/Hα  can be used to separate SB galaxies and AGNs [Kewley et al. 
2001].

Kewleyʼs 
line

Heckmanʼs 
line

Kauffmanʼs 
line

log(NII)/Hα

log(OIII)/Hβ



Parameters of the experiments

PhotoObjAll table
 (SDSS-DR5)

Photometric redshifts [D’A. et al. 2007]

petroR50_u, petroR50_g, petroR50_r, 
petroR50_i, petroR50_z
concentration_index_r
fibermag_r
(u – g)dered, (g – r)dered, (r – i)dered, (i – z) dered
dered_r

photo_z_corr

Targets

Photometric parameters

1° Experiment: AGNs vs SB Galaxies:
 AGNs -> 1, Mixed -> 0

  
2° Experiment: Type I AGNs vs Type II AGNs:

 Type 1 -> 1, Type 2 -> 0
 
3° Experiment: Seyferts vs LINERs:

 Seyfert -> 1, LINERs -> 0
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A 2-dim BoK (II)

log(NII)/Hα

log(OIII)/Hβ
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Results (II)*
Sample Parameters BoK Algorithm etot ctot

SDSS 
galaxies (1)

SDSS photometric 
parameters + photo 
redshift

BPT plot + 
Kewleyʼs line

 

SDSS 
galaxies (2)

SDSS photometric 
parameters + photo 
redshift

BPT plot + 
Kewleyʼs line 

+ FWHM 
requirements

SDSS 
galaxies (3)

SDSS photometric 
parameters + photo 
redshift

BPT plot + 
Heckmanʼs+ 

Kewleyʼs 
lines

∗[Cavuoti, D’A., Longo, 2008], in prep.

MLP

MLP

MLP

SVM

SVM

SVM

~76% ~54%

~74% ~55%

e1~95%
e0~98%

e1~82%
e0~86%

~100%

~98%

~80%

~78%

~92%

~89%
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How can we improve AGNs 
selection and classification? 

Improving AGN classification

Improving the efficiency of separation between 
different families using better spectroscopic 
diagnostics, i.e. using a better BoK (in coll. with 
Rafanelli and Benvenuti - Università di Padova)

Improving the accuracy of the 
photometric parameters measuring 
them with specifically tailored tools  (in 
coll. with De Carvalho and La Barbera - 
OAC). 

The improvement of the Base of Knowledge can be accomplished not only 
enhancing the quality of spectroscopic classification, but also by enlarging 
the wavelength range whence the BoK is extracted. This is a possible 
approach to connect differently selected AGNs (X-ray ⇔ optical/infrared)  

Customizing the algorithms for specific tasks in 
order to determining more efficient criteria/
strategies for the fine tuning of the results (better 
exploration of plane (γ, C) for SVM, for instance.) 
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A long-haul endeavour 

1. Determination of a more 
e f fi c i e n t s e p a r a t i o n o f 
different types of AGNs in a 
multi-dimensional spectral 
diagnostics space. 

2. Selection of photometric 
candidates exploiting a BoK 
based on the previous point.

3. Selection of AGNs from 
optical/NIR photometric data 
using a not-optical BoK.

4. Automatic identification of 
s p e c t r a l p a t t e r n s a n d 
features using .

1° Level BoK
eyeball class., other 

techniques...

2° Level BoK
Spectroscopic 

Diagnostics
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Conclusions 
‣  Unsupervised clustering methods have proved to be efficient 

and reliable for QSOs photometric candidate selection. 
Refinements of BoK will be key for further enhancements.

‣ The integration of supervised classification algorithms for 
photometric data and unsupervised selection of spectroscopic  
BoK for AGNs classification looks promising. 

‣ Syncretism of expertise: astrophysics, statistics, data mining, 
distributed computing together. Who could ask for more?

‣ VO provides powerful and flexible tools for massive data 
gathering and analysis. Our algorithms have been deployed 
inside the Astrogrid VO environment and are available for 
everyone. For details, documents, papers browse the link:

Astronomical Data Analysis V - Heraklion 9/5/08

http://people.na.infn.it/~astroneural/
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