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Overview
New developments in data assimilation and statistical estima-
tion theory are necessary to characterize the transient phenomena
responsible for space weather. We present a state-space model
for the time-varying corona and measurements. State estimation
methods may then be used to solve the resultant time-dependent
inverse problem. However, such a formulation demands new
state-estimation methods that scale well with problem size. We
describe a Monte Carlo state estimation algorithm, the localized
ensemble Kalman filter (LEnsKF), that results in dramatic reduc-
tions in computation for tomographic inverse problems, thus en-
abling data-assimilative models of the stellar atmosphere.

1 Forward Problem
Electron Density: The measured polarized light yi(·) at time in-
dex i is related to the unknown electron density xi(·) by

yi(θi, s) = C

∫
R
dl H(s, s + lθi)xi(s + lθi) + vi(θi, s) (1)

where θi is the orientation of the observer relative to the Sun, s is
the coordinate in the measurement plane, l is the distance along
the line of sight,H(·) is a known scattering function [1] that encap-
sulates the Thomson scattering physics, and vi(·) is instrument-
dependent noise. Discretizing (1) results in the linear system

yi = Σi Λxi + vi = H ixi + vi (2)

where yi ∈ RM , Σi corresponds to line integrals, the diagonal ma-
trix Λ is the spatially-dependent scattering potential, and xi ∈ RN .
Note that N may be large, e.g., dividing the 3D solar atmosphere
into 100× 100× 100 voxels results in N 6!

Electron Temperature: The observed light at extreme ultraviolet
wavelength λ is related to the density of electrons at a given tem-
perature T by the following, where ψ(·) is the emission process:

yi(θi, s, λ) = C

∫
R
dl

∫ ∞

0

dT ψ(λ, T )xi(s+ lθi, T ) + v(θi, s, λ). (3)

Discretizing (3) results in the following: (⊗: Kronecker product)

yi = (T ⊗Σi)xi = H ixi + vi. (4)

with T given by a plasma emission model such as CHIANTI [2].
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2 Static Reconstruction
Prior work has assumed the unknown is fixed over I = 14 days

y1:I = H1:I x + v1:I (5)

where, e.g., y1:I , (yT1 , . . . ,y
T
I )T . Estimates may then be computed

through a constrained, regularized optimization:

x̂ = arg min
x≥0

‖y1:I −H1:I x‖22 + λ‖Dx‖22. (6)
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3 Dynamic Reconstruction

Dynamic Signal Model: General Hidden Markov Linear Additive Noise
Initial prior: p(x1) µ , E[x1], Π1 = Var(x1)

Measurement model: hi(yi|xi) yi =H ixi + vi, Var(vi) = Ri

State-transition model: fi(xi+1|xi) xi+1 = F ixi + ui, Var(ui) = Qi

Under the above signal models, dynamic tomographic reconstructions may be computed as minimum mean
square error (MMSE) state estimates: x̂?i|j ,

∫
RN xi p(xi|y1:i) dxi. Each MMSE estimate x̂?i|j is the optimal

estimate of the N dimensional physical state xi at time index i given the set of data y1:j , {y1, . . . ,yj}. It is in
general computationally intractable to compute x̂?i|j when the state dimension N is large.

3.1 Particle Filter (PF) [3]

The PF processes the set of
particles {(wl

i, x
l
i|j)}Ll=1 such that

their empirical distribution con-
verges to the posterior p(xi|y1:j)
as the # of particles L→∞.

The PF estimates xi|j converge
to the MMSE estimates x̂?i|j.

i = 1

xl
1|0

i.i.d.∼ px1(x1), wl
0 = 1

L

1 ≤ l ≤ L

Measurement Update (xl
i|i−1, wl

i−1 → xl
i|i, wl

i)

wl
i = wl

i−1hi(yi|xl
i), µl

i = wl
i/

L∑
l=1

wl
i, xi|i =

L∑
l=1

µl
ix

l
i

If
L∑

l=1

(µl
i)

2 exceeds a threshold then resample.

Time Update (xl
i|i → xl

i+1|i)

xl
i+1|i ∼ fi(xl

i+1|xl
i)

(i.e., simulate the evolution of
xl

i to xl
i+1 according to fi(·|xi))

i = 2

≈xi|i x̂i|i

xi|i

i = i + 1

yi

xi+1|i ≈ x̂i+1|i

+: Operates under the general hidden Markov model, i.e., nonlinear problems.
−: Computationally limited to state dimensions no greater than N ≈ 100, e.g., [3], [4].

3.2 Kalman Filter (KF) [5]

The KF computes linear MMSE (LMMSE) state es-
timates x̂i|j which are MMSE optimal under the
constraint that they must be an affine function of
the data y1:j.

The KF is a deterministic algorithm while the PF
and LEnsKF are Monte-Carlo algorithms.

i = 1
x̂1|0 = µx1

P 1|0 = Π1

Measurement Update (x̂i|i−1 → x̂i|i)

Ki = P i|i−1H
T
i

(
H iP i|i−1H

T
i + Ri

)−1

x̂i|i = x̂i|i−1 + Ki

(
yi −H ix̂i|i−1

)
P i|i = P i|i−1 −KiH iP i|i−1

Time Update (x̂i|i → x̂i+1|i)

x̂i+1|i = F ix̂i|i
P i+1|i = F iP i|iF T

i + Qi

i = 2

x̂i|i
P i|i

i = i + 1

x̂i+1|i, P i+1|i

yi x̂i|i

−: Requires the storage and operation on a massive matrix, i.e., P i|j requires 2 TB of storage when N = 106.

3.3 Localized Ensemble Kalman Filter (LEnsKF) [6]
The LEnsKF processes an en-
semble {xli|j}Ll=1 such that the
sample mean (x̃i|j) and co-
variance (P̃ i|j) approximate
the KF x̂i|j and P i|j.

C i ◦ P̃ i|j is the localized esti-
mate of P i|j. (◦: the element-
by-element matrix product)

i = 1

x̃l
1|0

i.i.d.∼ N (µ1,Π1)

1 ≤ l ≤ L

Measurement Update (x̃l
i|i−1 → x̃l

i|i)

x̃i|i−1 = 1
L

∑L
l=1x̃

l
i|i−1, zl

i|i−1 = x̃l
i|i−1 − x̃i|i−1

Bi , (Ci ◦ P̃ i|i−1)H
T
i = [Ci ◦ 1

L−1

∑L
l=1z

l
i|i−1(z

l
i|i−1)

T ]HT
i

K̃i = Bi[H iBi + Ri]−1

xl
i|i = xl

i|i−1 + K̃i(yl
i −H ix

l
i|i−1), yl

i
i.i.d.∼ N (yi,Ri)

Time Update (x̃l
i|i → x̃l

i+1|i)

x̃l
i+1|i = F ix̃

l
i|i + ul

i

ul
i

i.i.d.∼ N (0,Qi)

i = 2

≈x̃i|i x̂i|i

P̃ i|i≈ P i|i

x̃i|i

i = i + 1

yi

x̃i+1|i ≈ x̂i+1|i, P̃ i+1|i ≈ P i+1|i

+: Computationally tractable for huge state dimension N applications when tapering is applicable.

4 Covariance Tapering
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1 • The LEnsKF is computationally tractable only if the the ensemble size L is small.

• The sample covariance P̃ i|i−1 is a provably poor estimator of P i|i−1 when L is
small. The LEnsKF instead uses C i ◦ P̃ i|i−1 as the estimator of P i|i−1 [7].

• For typical problems, error correlations are strongest amongst spatial neighbors.
The example taper matrix C i (left) enforces this intuition where the (m, n)th
element is close to 1 near the diagonal and 0 when far away.

• Covariance tapering introduces a bias but can greatly reduce the estimator variance. Ultimately, the proper
choice of taper matrix enables a reduction in ensemble size L, many additional computational simplifica-
tions as a result of the sparsity of C i, and preserves a positive definite covariance matrix estimate.

5 Numerical Experiment
The performance of the LEnsKF is demonstrated in the following tomography
simulation. TheN dimensional unknown xi is a highly dynamic random process
with complicated motion, where the time index 1 ≤ i ≤ I . Both a low and high
sampling of the process are considered. The measurements yi are a set of M
parallel line integrals of xi at some angle θi with 1% additive white Gaussian
noise. The state transition model is F i = I , i.e., the state evolution is modeled as
a random walk. More sophisticated models may be easily incorporated.

Low resolution: N = 322, M = 46, I = 256 High Resolution: N = 1282, M = 184, I = 2048
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• The LEnsKF converges to the lo-
calized KF (LKF) as the ensemble
size L→∞ and shows the bias in-
troduced by covariance tapering.

• The (L)KF is much more compu-
tationally demanding and scales
more poorly than the LEnsKF.

K
F:
x̂
∞ i|i

6 Conclusions
The LEnsKF shows great promise for dynamic tomography applications as
demonstrated in the numerical experiment. Scaling the method up for 4D solar
tomography will require further developments. Fortunately, the method lends
itself to parallelization, an endeavor that shows great preliminary promise.
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