Sparsity and Morphological Diversity in Source Separation

JÉRÔME BOBIN
IRFU/SEDI-SERVICE D'ASTROPHYSIQUE
CEA SACLAY - FRANCE

Collaborators

- Yassir Moudden CEA Saclay, France
- Jean-Luc Starck CEA Saclay, France
- Jalal Fadili Caen University, France
- Michael Elad The Technion, Israel Institute of Technology
- David Donoho Department of Statistics, Stanford University

Outline

- I Sparsity, Morphological diversity and Source Separation
 - 1 A brief introduction to Blind Source Separation
 - 2 Sparsity and morphological diversity
 - II Generalized Morphological Component Analysis
 - 1 Sparsity and morphological diversity in BSS
 - 2 Extension to Spatial and Spectral sparsity constraints
 - 3 Application to Planck data
- III Extension to a wider range of multichannel inverse problems
 - 1 Adaptive Multichannel Image Denoising
 - 2 Filling holes Multichannel Inpainting problems

Part I

Sparsity and Morphological Diversity in Source Separation

The Classical Mixture Model

Examples:

EEG, ECG, Multispectral imaging, Astrophysical Component separation, etc...

A Short Introduction to Source Separation

Goal:

Estimating n unknown signals (the sources) from m linear mixtures (observations) with $m \ge n$.

A strenuous problem!

Both S and A are unknown

have to be estimated

Blind Source Separation

BSS is about devising quantitative measures of diversity to disentangle between the sources

LOOKING FOR:

- Decorrelated sources: equivalent to principal component analysis (PCA).
- Independent sources: Independent component analysis (ICA) emphasizes on statistical independence to distinguish between the sources.

Don't provide stable solutions in noisy environment.
Often strongly dependent on sources' statistical model.

Sparsity or how to better distinguish between the signals

Sparsity or how to better distinguish between the signals

Pixel Domain

Sparsity or how to better distinguish between the signals

Pixel Domain

Curvelet Domain

Basis

 S_2

Projection coefficients in a wavelet basis

 S_2

Projection coefficients in a wavelet basis

Projection coefficients in a wavelet basis

Projection coefficients in a wavelet basis

Morphological diversity: signals with different morphologies have disjoint significant coefficients in a sparsifying dictionary.

What about mixtures?

Mixed signals are likely to be less sparse

Part II

Generalized Morphological Component Analysis

Generalized Morphological Component Analysis (GMCA)

Estimating A and S such that the sources are sparse in Φ

Solved via an iterative thresholding algorithm

A simple experiment

Original Sources

Mixtures

Noiseless experiment, 4 random mixtures, 4 sources Single Wavelet basis

The solution is indeed sparser

Sparsity divergence :
$$\|\tilde{\alpha}\|_1 - \|\alpha\|_1$$

GMCA is robust to noise

Random mixtures with additive Gaussian noise The mixing matrix criterion measures a deviation between the true mixing matrix and its estimate

 Φ : Curvelets + Local DCT

GMCA provide more robust solutions in the presence of noise

Extension to Spatial and Spectral Sparsity Constraints

Extending GMCA to better account for spatial and spectral structures

GMCA with spectral and spatial sparsity constraints

It amounts to decomposing the data X into the linear combination of n rank-1 matrices that are sparse in $\Xi \otimes \Phi$

Preliminary Results

64 Channels, additive Gaussian noise Each source is a 128x128 image Random laplacian mixing matrix in the wavelet domain

Sparse representation - spatial : curvelets - spectral : wavelets

Collaboration with the CESR/Toulouse on hyperspectral Mars Observer data.

Application to Planck data

9 Channels: 30GHz to 857GHz

Mixtures of: CMB, SZ, Dust,

Synchrotron, Free-Free, ...

The mixture model is no more valid (Dust and Synchrotron) GMCA is applied locally in the wavelet domain

Planck data

What about CMB?

What about CMB?

What about CMB?

Input Map

Part - III

Extensions to a wider range of inverse problems

The strength of GMCA

GMCA is able to find a multichannel representation in which signals are jointly the sparsest

GMCA framework can then be the backbone of new adaptive sparsity-based techniques in a wide range of multichannel inverse problems:

Denoising, deconvolution, inpainting, superresolution, ...etc.

Adaptive multichannel denoising

SNR = 15 dB

Wavelet denoising in the RGB space

Denoising in the adaptive GMCA-Wavelet space

SNR enhancement up to 1.5 dB

J.Bobin, J.-L. Starck, J. Fadili, Y.Moudden, "Sparsity and Morphological Diversity in Blind Source Separation", IEEE Transactions on Image Processing, Vol.16, N°11, p. 2662 - 2674, November 2007.

Adaptive multichannel inpainting

90% of the "color" pixels are missing!

Adaptive multichannel inpainting

$$\min_{\{a^i, s_i\}} \sum_{i} \|\alpha_i\|_{\ell_1} \text{ s.t. } \left\| \mathbf{X} - \mathcal{M} \odot \sum_{i=1}^n a^i s_i \right\|_{\ell_2} < \epsilon$$

Where ${\cal M}$ is a binary mask $s_i = lpha_i {f \Phi}$

 Φ = Curvelet + Local DCT

MCA-based solution

GMCA-based solution

SNR enhancement up to 1 dB

J.Bobin, Y.Moudden, J. Fadili, J.-L. Starck,"Morphological Diversity and Sparsity for Multichannel Data Restoration", Journal of Mathematical Imaging and Vision, 2007 - in press.

Take-away messages

A general framework: GMCA provides a general framework for multi-valued data analysis.

Flexibility: flexible framework with a wide range of potential extensions (multi/hyper-spectral component separation, joint estimation of the number of components, ...).

<u>Applicability</u>: already applied to Astrophysical component separation; we are looking forward to applying GMCA to hyperspectral imaging (Mars Observer data) and biomedical data analysis (NMR and Mass spectroscopy).

Going further ...

A software - GMCALab - is also available at http://pagesperso-orange.fr/jbobin/

- J.Bobin, J.-L. Starck, Y.Moudden, J. Fadili, "Blind Source Separation: the Sparsity Revolution", submitted to Advances in Imaging and Electron Physics in press
- J.Bobin, J.-L. Starck, J. Fadili, Y.Moudden, "Sparsity and Morphological Diversity in Blind Source Separation", IEEE Transactions on Image Processing, Vol.16, N°11, p. 2662 2674, November 2007.
- J. Bobin, Y. Moudden, J.-L. Starck and M. Elad, "Morphological Diversity and Source Separation", IEEE Signal Processing Letters, Vol.13, N°7, p. 409-412, July 2006.

Application to the ESA Planck Mission

J.Bobin, Y.Moudden, J.-L. Starck, J. Fadili, N. Aghanim, "SZ and CMB reconstruction using GMCA", Statistical Methodology - Special Issue on Astrostatistics - in press - 2007.

More experiments available at: www.morphologicaldiversity.org