Multispectral Analysis based on Wavelet Fusion & Sparse Decomposition

Albert Bijaoui

Cassiopée Laboratory
Côte d'Azur Observatory
BP42229
06304 Nice Cedex 04 France

Virtual Observatory & Multiband Imaging

- Access by ALADIN to a large set of sky surveys
- Consistent detection between images
- Deepest analysis
- Object measurements consistent between bands
- Spectral class identification
- Class mapping

Image Fusion in the pixel space

- Co-addition & related sufficient statistics
 - $-x_n=c_n x+n_n (n_n \text{ Gaussian noise s.d. } \sigma_n)$
 - $-y = \sum c_n x_n / \sigma_n^2$ is a sufficient statistics for the fusion
 - Best resulting SNR
- What scaling factor c_n ?
 - A global factor on the image → true co-addition
 - Variation with the pixel spectral distribution
- $c_n = x_n \rightarrow \text{Chi-2 images}$

$$y = \sum \frac{x_n^2}{\sigma_n^2}$$

- Noisy images
- Denoising of the Chi-2 images
- − PSF variations → Fusion in a wavelet transform space

Fusion in the wavelet space

- PSF variation with the color
- Chi-2 fusion scale / scale
 - A wavelet coefficient has a null mean!
 - Associated sign → linear combination

$$z = \sum \frac{x_n}{\sigma_n} \qquad w = \sqrt{y} \times sign(z)$$

- Applied wavelet transforms
 - À trous algorithm >> too redundant
 - Pyramidal >> Inversion
 - Pyramid of Laplacians
 - DWT

B Image

U-Up-B-V-R-I Images

Fusion in the wavelet space

- Thresholding
 - Related statistics

Object Decomposition

- Pixel decomposition (cf. Sextractor)
 - Background mapping
 - Thresholding & field labelling
 - Deblending
 - Field variation with the color
- Multiscale Vision Model
 - Thresholding in WTS
 - Object as local maxima in WTS
 - Multiscale mask & object reconstruction
 - Variation of the multiscale mask with the color
- → Sparse decomposition common to the images

Scaling function & sparsity

The multiresolution block

$$f(i,k) = \frac{1}{2^i} \int_{-\infty}^{+\infty} f(x) \varphi(\frac{x-k}{2^i}) dx$$

Dilation equation

$$\frac{1}{2}\varphi(\frac{x}{2}) = \sum h(n)\varphi(x-n)$$

Information at scale i can be merged into a more significant coefficient at scale i+1

- Search of a sparse decomposition
 - Variational approach (ex. basis pursuit)
 - Greedy algorithm (ex. matching pursuit)

MP with scalets (1)

The à trous algorithm:

$$f(i+1,k) = \sum h(n)f(i,k+2^{i}n)$$

That we can write as:

$$f(i+1,k) = \sum h(i,m)f(k+m)$$

- With: $h(i,m) = \sum_{n} h(i-1,m-2^{i}n)h(n)$
- Scalet at (i,k_0) $f(k_0+m) = a(i,k_0)h(i,m)$
- We get: $\sum f(k_0 + m)h(i, m)$

$$a(i,k_0) = \frac{1}{\sum h^2(i,m)}$$

MP with scalets (2)

- l_2 reduction $[\sum f(k_0 + m)h(i, m)]^2$ $n(i, k_0) = \frac{1}{\sum h^2(i, m)} = (SNR)^2$
- Greedy algorithm with scalet patterns h(i,m)
- That does not work
 - Too slow algorithm (undecimated/pyramidal)
 - Difficulty to parallelize
 - Non orthogonality -> High pattern coupling

Local backgound removal

- The background is a spurious component
- Local estimation

$$f(k) = a(i, k_0) p(i, m) + b(i, k_0)$$

Adjustment window

$$R(i,k_0) = \sum_{m} \varpi(i,m) [f(k) - a(i,k_0)p(i,m) - b(i,k_0)]^2$$

New cross-product

$$a(i,k_0) = \sum f(k_0 + m)r(i,m)$$

With

$$r(i,m) = \frac{S_0 p(i,m)\omega(i,m) - S_1 \omega(i,m)}{S_0 S_2 - S_1^2}$$

Connection to the à trous WT

- ½ reduction is not the available criterion
- → coefficient SNR
- p(i,m) pattern & fast algorithm
- Fit with a 2^i step: m=n 2^i
- We set

$$\varpi(i,m) = h(n)$$
 $p(i,m) = \delta(n)$

This leads to the wavelet coefficient

$$a(i,k_0) = \frac{1}{1 - h(0)} [f(i,k_0) - f(i+1,k_0)]$$

The Pyrels

- Les h(i,m) are generated by the à trous algorithm → we call them pyrels (pyramid elements).
- They are scalet type pyrels
- Other types can be generated by a modification of the local fit
- Experimentally : binomial filter
 - The h(i,m) series tend to the B-splines
 - Compacity, regularity → quite Gaussian

MP the AT WT

- 1. Wavelet transform
- 2. Suprema identification
- 3. Threshold = α Abs(Max) \rightarrow Coupling
- 4. Amplitude adjustment (coupling reduction)
- 5. Image reconstruction
- 6. Wavelet transform & subtraction
- 7. Test on the residuals
- 8. Come back to step 2
- Global background estimation and adding

The Pyramidal Algorithm

- The Pyramidal wavelet transform
- Same pyrel pattern h(i,m)
- Suprema identification on a pyramid
- Reduction of the coupling between the pyrels
 - Increase the algorithm stability
- Background reduced to a constant
- Can work on only positive pyrels

Two-Dimensional Algorithms

- What scalet ?
 - Variable separation for the scaling function
 - Quasi isotropic analysis with B-spline
- What wavelet?
 - A trous / Pyramidal
 - Difference between approximations
 - Oriented patterns → other pyrel types
- Transposition of the 1D algorithms
- Possibility of positive decomposition

MSMPPy2 on the Fusion Image

- Significant wavelet coefficients: 2% pixels
- Pyrels: 0.43 %

Multiscale Field labelling

 The pyrels from which the centers are less than a radius depending of their scale have the same label

Object Reconstruction

- After the field labelling it easy to associate to merge pyrels into objects
- The image of each object can be restored from the pyrels having its label

Restoration from the Pyrel Map

- The pyrel decomposition carries out a set of functions which can be used for restoring each image
- Only the pyrel amplitudes are fitted from their related wavelet coefficients
- That concentrates information on few coefficients leading to clean images
- Thus consistent measurements between colors can be derived

Spectral Analysis

- Classical color indices
 - Negative / null fluxes
 - Noisy indices
 - Non additivity from components
- Use of ratios / weighted mean
 - Ratio noise / weighted mean
 - Additivity from components
- Classification from the ratios
 - Weighted K-means method
 - ~10 classes
 - Pixels /Pyrels
 - Insufficient class separation

Source Decomposition

- Object: pixel / pyrel values as a mixture of spectral energy distributions (SED)
- Matching pursuit with SED
- Source non orthogonality
- Source images can be determined from the pyrel decomposition

General Organisation

Conclusion

- Work in progress
 - Optimization by a variational approach
 - Oriented pyrels
 - New pyrel labelling for object decomposition
 - Bayesian coefficient softening
 - Fusion during the pyrel identification process
 - Taking into account the PSF
- Can be applied to large images
- Is information lost after the fusion?
 - Pyrel decomposition and Blind source separation